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FOREWORD

With the advent of programs such as Pilot's Associate, Rotorcraft
Pilot's Associate, Submarine Operational Automation System, and various
others there has emerged an increasing interest in associate systems
technology - the develop of systems that provide real-time support for
planning and decision making in rapidly evolving situations. The objective
of this report is to explore the relevance of automated planning in
Artificial Intelligence (AI) to associate systems technology.  Specifically
this report achieves four objectives. First, it provides a general overview
of automated planning techniques. Although the automated planning
literature is extensive it lacks a good introduction. Consequent!y, we have
prepared this report so that it may serve as a general introduction.
Second, for each group of automated planning techniques the potential for
ssscciate systems technology applications is explored. Third, we explore
uie relationship between automated planning and other technologies (viz.,
mathematical optimization, decision theory, hardwuar: engineering) with
respect to their potential relevance to associat: systems technology.
Finally, we merge the previous discussions intc . general asscssment of
automated planning and recommend directions for future research in
automated planning that would directly coatribute to better associate
systems technology systems.

This report contains three parts Part I (Chapters 1 - 6) examines
aiternative paradigms for automated pilanning and the relevance of each
paradigm to associate systems tcchnology. Part II (Chapters 7 - 9)
cxamines the relationship betweea Al automated planning techniques and
related techniques in other Jdisciplines, specifically Operations Research,
Decision Theory and Hardvi:re Engineering. As indicated there, we feel
that associate systems could benefit considerably from an effective
merging of these dis iplines. Finally, Chapter 10 presents our
recommendation for future technology investments that are relevant to
associate systems teciinology.

BDM would like to acknowledge the dedication of Dr. Paul E. Lehner

of George Mason University who served as a consultant for this project and

provided materinl for this report.
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INTRODUCTION

This report describes the work performed by BDM and its technical
team in o establishing  the  technical  basis for a future rescarch  and

development program in the area of nmussion planning technology.  The
perceived  operational need is that of dynamic repianning -- planning

performed during the cxcecution of air missions in response to changes in
the objectives and ccenstraints surrounding the origmnal planning process.
This work was performed for DARPA/ASTO under the Pilot's Associate
System Engineering and Technical Analysis project. It was the intention of
DARPA that this work complement the work donc by SRS ‘Technologies
under a similar task which focused on the assessment of current tactical
and  strategic mission  planning  capabilitics and the projection of future
operational needs. The BDM project serves to characterize the technical
nature of the dynamic nussion planning problem and to suggest technical
approaches  which might warrant future investment.

The process used by BDM was to first start with future operational
SCCNArios. Both tactical and strategic scenartos  were  postulated and
analyzed.  The strategic nussion scenario included the ftull range of mission
functions that could be envisioned for the future, including provisions for
scarch and reconnaissance.  The strategic mission planning problem was
then characterized in a general fashion.  With that gencralizauion, a generic
planning problem was defined which included all of the mathematical
compiexity of the original but cast the problem in a non-mihitary light.
This part of the work was performed by ORCA, a Caiifornia-based small
business.  The problem which was found to represent the military mission
planning problem was one centered on a Old West Marketeer, a compiex
extension of the classic travelling salesman problem.

The tactical scenario was gencrated by the operattons rescarch
department of BDM. Bascd on emerging world tensions, BDM postulated an
invasion of Kuwait and Saudi Arabia by lraq. Forces based in Saudi Arabia
ook on the tamiliar offensive ccounter wir, defensive counter air, close air
support, and  battleficld interdiction roles. In order to uanalyze these
missions from a technology perspective, a secries in relationship  graphs
were generated. These graphs depicted the objective of the mission at the
center and arrayed  all of the contributing  tactors around with arrows
indicating that, for instince, avoiding detection 15 a function of range
speed, radar effectiveness, countermeasure  ctfectiveness, and RCS  (to
name a4 tew).

Viii BDMA'SQ-01-0742-TR
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This work led to description of the mission planning problem in the
form of censtraint satisfaction. A constraint representation syntax was
developed in first order predicate calculus which would be useful at some
future time in order for the actual computation of flight paths for aircraft,
formations, and mission packages as part of theater scale air operation.
The work in constraint representation language for mission planning led
into the techniques for solution of such constraint reasoning problems. The
majority of this report i1s devoted to the description and asscssment of
those techniques in the context of planning within an associate system.

The work led a natural distinction between the optimizaticn
approaches to problem solving and the constraint-based (Al) approaches
to problem solving. The investigators for this project absolutely satisfied
themselves that boih approaches are necessary, and that complex
probiems will not be solved sausfactorily by either methed alone.  An
optimization problem does not scale linearly with size. The scale factor is
closcr 1o a power of 7. A pure constraint-based solution may not provide
adequate assurance of optimality. Clearly, the problems represented by
dynamic mission replanning quickly becomc combinatorially explosive. A
different method must be applied to avoid the combinatorics trap. This
implies a form of constraint-based preprocessing to limit the actual
problem to size that lends itsclf to initial and subsequent iterative solution
by a variety of optimization techniques. A future R&D program which
addresses dynamic mission replanning should include investigation into
combinations of solution tcchniques integrated into a single solution
cnvironment,

In addition to Al based automated planning techniques presented in
Chapters 1-6, there are a variecty of technologies that are relevant to
automated planning and specifically relevant to mission planning and
associate systems. In Chapters 7-9 we e¢xamine three such areas:
mathematical optimization, decision theory, and hardwarc.

Mathematica! optimization (also called mathematical programming)
1s an area of Operations Research cricnted toward the development of
automated procedures that find optimal solutions to a variety of problems.
In the area of automated planning, mathematical optimization represents a
paradigm that competes with the Al paradigms. In the Al paradigm,
automated planning problems are viewed as finding a satisficing solution
that is consistent with o sct of symbolic constraints. In the OR paradigm,
plannmi:y 1s vieved as finding a solution that scores high (perhaps
optimally) on an objective function (measure of merit) while staving
consistent with a sct of mathematical constraints {a set of cquations and

ix BDM/VEQ-91-0742-TR
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inequalities). In Chapter 7 we will examirnc the merits and beneiits of each
approach. and discuss an appropriate melding of these two perspectives.

Decision Theory is an arca of research devoted to the development of
normative theories of inference and decision making. In the decision
theory perspective planning is viewed simply as a problem of finding
actions that maximize cxpected utility. Like mathematical optimization,
decision theory provides a paradigm for automated planning that competes
with the constraint satisfaction/satisficing approach of the Al paradigms.
In the last few vecars, decision theory has had a significant resurgence
within the Al community. This is evidenced by the most recent AAAI
(1991) confcrence, where a substantial portion of the papers presented
dzcision theoretic apprcaches. In Chapter § we ecxamine the decision
theoretic paradigm as well as the varicty of ways it 1s currently being
applicd to automatcd planning problems.

Finally, Chapter 9 cxamines current developments 1n  hardware
technoiogy and its possible applicatton to autoicated planning.  Unlike
some other areas in Al (c.g., image understanding) very little has been
done 1o develop hardware capabilities that are uniquely tailored to
automated planning. The potential for such developments is explored in
Chapter 9.

The compicte set of recommendations resulting from this project are
described in Chapter 10.

X BDM/VSQ-91-0742-TR
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CHAPTER 1

PLANNING AS SEARCH

1.0 Introduction

Within the Al community, there exist several competing paradigms
for automated planning. Each paradigm provides a general perspective on
the following questions. What is a plan? How should plan-relevant
knowledge be represented?” How should plans be generated and modified?

Our introduction to automated planning 1s organized around these
paradigms. Specifically, we review the following approaches:

Planning as Heuristic Search - In this paradigm, a pilan is defined as a
sequence of actions that results in a sequence of states that ends
with a state satisfying a goal condition. Planning problems are
characterized using a state-space representation. Actions are defined
as functions that map one state into another. Automated planning is
ireated as a problem of searching through the state-space. This is
achieved by applying general purpose heuristic search procedures.
Applications of this approach are found in the path planning
algorithms used in Pilot's Associate.

]

-

Planning as Subgoal Directed Search - This approach is often referred
to as classical planning. Planning is still viewed as a problem in
state-space search. However, search through ti.e state-space is goal-
directed. Beginning with the goal description, subgoals are defined
and refined until specific actions can be found to achieve those
subgoals. By achieving a sequence of subgoals, the final goal
condition is reached.

Planning as Constrair Posting - The distinguishing feature of this
approach is the rccognition that a plan does not nced to be a fully
detailed plan of action. Oftea it is sufficient to identify the principal
actions that must occur and to put somc constraints on when and
how those actions will occur. Any specific set of behaviors that
conforms to thesc constraints should result in achieving the goal.
Planning is the process of identifying the relevant sct of constraints.

1 BDMVSQ-91-0742-TR




BDM INTERNATIONAL, INC.

Although most work in the constraint posting approach assumes a
state-space representation, this representation is not essential to the
paradigm. Consequently, it is more general that the previous two
paradigms. A variant of this approach is Pilot's Associate to generate
tactical advice for the pilots.

Planning as Plan Transformation - This paradigm is founded on the
recognition that an effective planner does not enter a planning
problem tabula rasa. The planner will usually have a store of
template plans or historical cases from which the planner can quickly
retrieve plans that have worked in similar situations. Planning is a
two step process: retrieve a plan that is relevant to the current
problem, and modify that plan unul a satisfactory plan i1s reached.
Automated planning procedures in the Submarine Operational
Automation System is based on this approach.

Planning from First-Principles - This paradigm is founded on the
belief that a truly general planning system should allow one to
declaratively characterize a problem domain and then let a general
problem solving mechanism generate plans.  Usually First-Order
Predicate Logic or some extension 15 proposed as the language for
describing the problem domain. Once the problem domain has been
characterized as a set of declarative statements in a logic all
reasoning can be achieved using general theorem proving techniques.
This includes reasoning necessary to generate plans. As a result, it is
not necessary to implement a specialized problem solving mechanism
for planning.

Planning and Reacting - This is not a paradigm, but an emerging area
of research. Until recently real-time planning has not received a lot
of attention in the Al research community. The focus of the planning
community was on the abstract plan generation process, and not on
the problem of controlling the behavior of robotic agents.
Consequently, problems related to plan execution monitoring, plan
repair. and recal time behavior control were generally ignored.
However, recent DARPA programs such as the Autonomous Land
Vehicle and Pilot's Associate have focused attention on the problem
of real-time planning and control. In Chapter 6 we review several
paradigms that have been proposed for addressing this problem.

For cach paradigm, we examine its relevance to associate systems
technology from three perspectives: plan generation, real time planning,
and plan modification.  For plan generatton we c¢xamine the range of

to
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problems for which the paradigm is appropriate. For real ume planning,
we will examine the extent to which each paradigm can support both rapid
planning and anytime problem solving An anytime problem solver (Dean
and Boddy, 1988) can be interrupted at any time during problem solving
with a request for the current best solution. For plan modification we are
interested in the extent to which the paradigm can correctly and rapidly
adapt a plan to an evolving situation. The planner should be able to
minimize the extent ro which the plan is modified.

1.1 Planning as Heuristic Search

The planning as search paradigm treats automated planring as a
problem in state-space scarch. To apply this paradigm one must (a)
represent the planning problem as a state-space graph, and (b) apply a
heuristic search technique to find a solution path in the state-space graph.
The solution path is the plan generated. The eleinents of this approach are
described below.

1.1.1 State-Space Graphs

A common way to view planning problems is to decompose the
problem domain into a set of possible states. Consider, for instance, the
eight puzzle problem shown in Figure 1-1. The objective is to move tiles
(numbered 1 - 8) from their initial location to their final location. Each
possible configuration of tiles represents a possible state. We can move
from one state to another by (implicitly) moving the blank square up,
down, left or right. [Each of these four possibilities represen:s a state-
change operation.  Starting with the initial position, one can depict all
possible sequences of state-change operations as a state-space graph. A
portion of the state-space graph for Figure 1-1 is shown in Figure 1-2. The
objective of state-space search is to find a path from the initial state to a
goal state. For the problem in Figure 1-1, one such path is shown in Figure
1-2.

An important property of state-space representations is that of path
independence.  In going from one state to another, say Si to Sj, the contents
of Sj should not depend or the path taken to get from Si to §j. This
property is needed in order to guarantee that the effect of any state-
cirange operation applicd to any state Sj can be computed from just the
contents of Si and nothing clse. All state-space search procedures assume
that this property is satisfied.

3 BDMVSQ-91-0742-TR
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3 1| 2 1 | 2
4 7 5 3 4 5
| 6 8 6 | 7 | 8

Initial State Goal State

Figure 1-1:  Eight Tile Puzzle Problem

As another example, consider the simplified mission planning
problem depicted in Figure 1-3. The aircraft at position A must maneuver
to position B and then return to A. The darkened areas represent regions
of high lethality. A common way to model this problem is to overlay a grid
on the map, and to treat aircraft movements as movements from one grid
location to an adjacent one. Each grid to grid movement identifies a state-
change operation. However, the relevant features of aircraft's status is
determined by more than just its current iocation.  Also important are
features such as current fuel level, current lethality, total lethality, etc.
Consequently, a state-space representation of this problem describes a
state in terms of a state vector (e.g., <location, altitude, speed, fuel, current
lethality, total lcthality, ...>) and state-change operations as functions that
calculate a new vector of values from the values in the previous state.
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Goal
State

Initial State

Figure 1-2:

Portion of State Space Graph for Eight Puzzle Problem
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Figure 1-3:

Simple Mission Planning Problem
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1.1.2 Searching State-Space Graphs

Once a planning problem has been translated into a state-space
representation, standard heuristic search techniques can be used to find a
path from the initial state to a goal state. Consequently, a special
mechanism for plan generation is not required.

Heuristic search techniques can be loosely separated into three
categories: undirected, locally-directed, globally-directed. Each of these
techniques will be illustrated using the example graph shown in Figure 1-
4. In reviewing the search techniques below, keep in mind that

1. each node represents a state,

o

arcs correspond to state transition operations (i.e., actions), and
3. for any node, its subnodes represent the set of possible next states.

In Figure 1-4, for instance, node | represents the initial state, and
nodes 10 and 16 represent two goal states (i.e., two states that satisfy the
goal critcria). The sequence 1-->4-->10 defines a plan of action involving
two actions. The first action changes the 1initial state into state 4 and the
second action changes state 4 into state 10 -- a goal state.

1.1.2.1 Undirected Search

Undirected search techniques simply expand nodes in a graph
according to a predefined pattern, irrespective of the contents of nodes
currently open.!

Depth-first search is an example. Whenever a node is visited? and
expanded, then the first subnode generated is immediately visited until a
stopping criteria (e.g., depth limit) is reached. When a subnode, sn, fails
(i.e., stopping cnteria is reached or all subnodes of Sn have failed) the next
subnode (i.e., a sibling of Sn) is visited. This continues until a goal node is

IA node is cxpanded if ihe subnodes of that node have been gencrated.  An
opcn node 1s a node that has been gencrated, but not cxpanded.

2A node being visited it processed as follows: (1) check to sce if it is a goal
node, (2) check to sce i the stopping criteria has been rcached, and if not (3)
generate subnodeces.
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Figure 1-4:  Typical State Space Graph
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reached or search terminates without a solution. In the case of Figure 1-4
the sequence of nodes visited would be

1, 2.5, 11, 12, 6, 13, 14, 7, 15, 3, 7, 15, 8, 15, 16.
The solution path is 1-->3-->8-->16.

In breadth-first all nodes generated at one level are visited before
any node at a deeper level is visited. In Figure 1-4, for instance, the
sequence of nodes visited by breadth-first search is

1,2,3,4,5,6,7,8, 9,10,
and the solution path i1s 1-->4-->10,

Both depth-first and breadth-first scarch have severe weaknesses.
Depth-first search tends to visit far more nodes that is required, and
usually returns an unnecessarily long sclution path. Breadth-first, on the
other hand, is computationally intractable since it requires that all nodes
generated must be maintained in memory.

A recent development in blind search techniques (Korf, 1985) is
depth-first iterative deepening (DFID). DFID iteratively applies depth-first
at incrcasing depth levels. All nodes to level one are searched, then all
nodes to level two are searched, and all nodes to level 3, etc. At cach
iteration, search begins anew. All riodes generated during previous
iteration are generated again. For insiance, in the case of Figure 1-4, DFID
would visit nodes in the following order:

Level 1: 1,2, 3, 4
Level 2: 1, 2,5,6,7.3,7, 8,4, 9, 10,

returning the path 1-->4-->10.

Despite the fact that DFID seems wasteful this extra cost of
repeatedly revisiting higher level nodes dces not increase the order of
magnitude of the search. Consequently, with respect to all possible blind
search techniques, DFID search is optimal with respect to memory usage
(number of nodes maintained in memory) and length of the soluticn nath,
and 1s asymptotically optimal on the order of magnitude of the number of
nodes visited. In short, DFID is optimal or ncarly optimal on all major
criteria for cvaluating blind search techniques.
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1.1.2.2 Locally-directed Search

Undirected search techniques do not presume any ordering of sibling
nodes. For instance, for the sibling nodes 2-4, blind scarch techniques do
not require that these nodes be visited 1n any particular order.  Often,
however, it is possible to order sibling nodes according to the relative
probability that each sibling 1s part of a successful path. Although
ordering nodes 1n this way would improve the efficiency of undirected
search, these techniques are not designed to expleit this extra information.
Locally-directed search tcchniques are designed to exploit sibling order
information.

A recent cxample of a locally-directed search technique (Ginsburg,
1990) is Iterative Broadening (IB). IB proceeds by iteratively performing
depth first search, where on each iteration the number of subnodes visited
is expanded. On the first iteration, only the first subnode of cach node is
visited. On the second titeration, the first and second subnode is visited.
On the third iteration, the first three subnodes are visited. And so on. In
Figure 1-4, for instance, the sequence of subnodes visited is:

Level 1:1, 2,5, 11
Level 2: 1, 2,5, 11, 12, 6, 13, 14, 3, 7, 15, 8, 15, 16,

returning the solution path 1-->3-->8-->16.

The performance of IB depends heavily on the quality of the
ordering information and the density of goal nodes in the state-space
graph. For many problems, however, it represents a significant
improvement over blind search.

1.1.2.3 Globally-directed Search

Locally-directed scarch exploits order information on sibling nodes to
guide search. Globally-directed search, on the cther hand, uses ordering
information that applies t0 a’l open nodes. This is achieved by applying a
function (f') to each open node and then always cxpanding the open node
with the lowest f'-value. As long as the number of nodcs with an f'-value
less than a goal node is finite. this procedure will eventually find a path to
the lowest -valued goal node.
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Obviously the efficicncy of globally-directed search depends on the
f'-valucs assigned to each node. A common approach is to assign a cost
value to cach arc and then to detine t is as follows:

g(n) = cost ot cheapest path from the start node to node n.

g*(n) = estimatc of cost of cheapest path from start to node n
= estimate of g(n),

h(n) = cost of cheapest path from node n to goal node,

h*(n) = estimate of h(n),

t*(n) = p*(n) + h*(n),

f'(n) = f(ni) if ni is a parent of n and f'(ni) > f*(n),

t*(n) otherwise.

In words the f'-value for any node 1s the cost to ger to that node plus
an esumate to complete. with the added requirement that thc {° value of a
node must always be greater than or equal to the f-value of the parent. If
the estimate-to-complete (h*) never overestimates the true cost to
complete, then globally-directed search will always find the lowest cost
path from the start node to the goal node.

When f° is defined as above, the search procedure is call the A
algorithm.  If the h* metric 1s always an underestimate, then the search
proccdure 1s called A* (Pearl, 1982).

To relate this to the mission planning problem, consider Figure 1-5.
Figure 1-5 i1s the same as Figure 1-4 except that the arc cost and the h*
values are shown (h* valucs are in brackets next to each node). Consider
each node to be a map locatior (e.g., way-point) where the objective is to
go from the initial locations (start node) to a goal location (e.g., one of two
alternative targets) while minimizing lethality. Along each arc is an
estimate of the lethality tfor that section of the route. A globally-directed
searcn procedure would viit the nodes in the following order,

1.2,3.8, 4, 9,10

and would return the ~uarkh 1-->4-->G-.->16,

—
—
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Figure 1-3:

A State Space Graph - Weighted
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One limitation of globally-directed search procedures is that they cannot
be applied to large search problems. A globally-directed procedure must
maintain a list of all paths generated during search. Consequently, every
node generated must be maintained. Even for toy problems, like the 8-
puzzle, thousands of nodes may be generated. For large problems, the
number of nodes generated will usually exceed the memory limitaiion of
the host haraware.

For large problems, an alternative procedure is available -- iterative
deepening A* (Korf, 1985). Iterative Decepening A* (IDA*) works like
iterauave deepening, but instead of performing a depth-first search at
increasing depths, IDA* performs a depth-first secarch at increasing f
levels. In Figure 1-5, for instance, IDA* would visit the nodes as follows:

Level Nodes Secarched max f
1 1 5
2 1,2.3 8
3 1.2,3,8,4,9.16 9

Note that the max f value for the next level is set to the minimum f
value of any node that was generated but not expanded. IDA* is not really
a globally directed procedure since it does a blind depth-first search
within cach f level. However, since it uses f to select levels it will always
find the lowest f'-valued path. Furthermore, because it uses blind depth
first search, it only needs to maintain the current path in memory.
Conscquently, 1t 1s suitable for large problems. On the other hand, the
number of nodes searched may increase, by an order of magnitude over
A*.  This 1s because it is easy to construct pathological state-spaces where
each 1increase in the max f value adds only one node to the search.
However, such state-spaces may be pathological. Consequently, in practice
IDA* may often be the preferred procedure for large search problems.

1.1.2.4 (Other Search Procedures

As a group, the secarch procedures described above are often referred
to as heuristic search procedures. Heuristic search procedures are
disunguished by the fact that they are necither goa' driven or knowledge
intensive.  In a goal dn en scarch, the selection of nodes to expand is
determined by 1identifying subgoals and finding state change operations
that move toward achieving those subgoals. Goal driven search s
generally knowledge intensive. It takes a substantial amount of domain
knowledge to sclect approprniatc subgoals and control scarch.
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As a search procedure subgoaling has some advantages. It makes it
possible to decompose a problem into a set of independent or scquential
subproblems. Brezking a problem into subproblems will substantially
decrease the amount of search required. It also makes it possible to utilize
dependency-directed backtracking. When a search path results in a dead
end, and backtracking is required, it may be possible to use the subgoal
information to determine how far to backtrack before continuing the
search. There is however no guarantee that this procedure won't skip over
a desired solution path.

As will be seen in the ncxt three chapters, most Al planning systems
combine a heuristic search procedure with some form of goal driven
search.

Also, it should be noted that there are a variety of scarch procedures
that cxploit probabilistic knowledge as to which nodes will iead to a goal
state (c.g., Pearl, 1984). In mission planning/associate system problems,
this knowledge is not generally availuble. Consequently, these procedures
are not reviewed here.

1.2 Relevance to Associate Systems Technology
1.2.1 Plan Generation

A mission planning problem can be viewed as a problem in state-
space search. To do this one must specify a vector of variables (location,
altitude, fuel level, threat exposure...) that identifies all factors relevant to
calculating a route from the aircraft's current location. This state-space
would be very large, and it is unlikely that an undirected or locally-
directed scarch procedure would be adequate. A globally directed search
procedure, such as A*, may be feasible if it is based on a good estination
function. Rccall that with a globally directed search procedure the number
of nodes searched and amount of memory required increascs substantially
as the accuracy of the heuristic estimatc decreases. A poor heuristic
estimation function would result in far too many open nodes for efficient
processing.

If onc is willing to give up on finding the optimal solution (e.g.,
lowest cost path), it is possible to substantially increase the cfficiency of
search. For instance, the processing timec of the A* algorithm can
sometimes be reduced dramatically by allowing the h* function to be an
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over estimate (Freeman, 1991). (For example, let f*(n) = g*(n) + w(h*{n))
where w is a multiplier greater than 1.) Alternatively, one can decompose
the problem into a set of smaller subproblems (e.g. pre select several way
points) and find optimal solutions to each subproblem. As Korf (1988)
noted, this can lead to an order of magnitude rcduction in search time.

In mission planning applications, we have noted two basic
approaches to simplifying the complexity of the search space.

Reduce number of state-space variables - Efficiency can be
improved, simply by ignoring some of the variables in the state-space
representation. By defining a few aggregate variables, and ignoring others,
an cfficient globally directed search procedure can be implemented. An
cxample of this is found in Lockheed's path planning system used in the
Pilot's Associate. In this system. the state-space is defined in terms of just
a tew simple variables (fuel level and visibility).

Another examble 1s the path planning system used to gencrate the
mission plans for the F-117A (Mitchell, 1991). Here, once again, a globally
optimal search procedure was applied to a subset of the relevant plan
variables.

In principal, this appioach can sometimes generate poor paths that a
more inclusive state-space representation would not. However, careful
engineering of the system usually minimizes the frequency of such events,
In addition, in some of these systems the human operator has the
opportunity to review and modify these plans.

Aggregate state-space rcpresentation - Rather than simply ignoring
some variables, it is sometimes possible to preprocess the state-space into
a more aggregate representation that contains fewer states.  One cxample
of this is found in the visibility graph uapproach to path planning (Meng,
ct.al., 1991, Silbert, 1991). In this approach, a map is processed to identify
a set of distinct "objects” that should be avoided. These objects are then
modcled as polygons, where the edges of ecach polygon defines a path
around the object. The vertices of cach polygon now definc a set of "way
points”, and the cost of moving from one way point to another line-of-sight
way point is precomputed.  Path planning is decfined as a problem of
finding a minimum cost path through a sequence of way points. If the
number  of domain objects 1s not exccssive, then this representation
significantly reduces the complexity of the search space.
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1.2.2 Plan Modification

For heuristic search there is no mechanism for pertforming plan
modification as opposed to replanning. Replanning simply requires
invocation of the search procedures with the new state. Plan modification
requires that the new plan be a minimal modification of the original plan.
Within the state-space search paradigm there is no mechanism for
implementing this "minimal modification” concept.

1.2.3 Real-time Planning

Heuristic cearch procedures are not designed for real time planning.
Although these procedures may be very fast, they are not designed for
anytime problem solving. This is particularly true of undirected and
locally-directed search procedures, since they have no metric for assessing
whether or not a partial path 1s promising. On the other hand glebally
directed scarch procedures are based on a metric for assessing wipccted
cost of any partial path. It is possible to interrupt search and request
information on the most promising partial path so far. An exarpic of this
is found in Korf's approach to real-time path planning (Korf, 1987; Korf's
planner iterates through the following sequence

1. Execute a depth-limited 1D * search from current state.
2. Select the path that minimizes total expected cost.

3. Execute the first action on the path selected.

4. Define the new state as the current state.

S. Gotol.

Using this procedure, the agent's next actions continuously foilow the most
promising path.?

3Unforwnately, this approach is not always rcliable.  This is bccausc the h*
function (cstimated distance to goal) may not be very scnsitive to the truc furction
(estimated distance to geal) many not be very sensitive to the true distance to the goal
until scarch rcaches a node that is very close to the goal. As Korf (1988) himsclf has
noticed. in some domains the h* valuc i1s nearly constant for all nodes cxcept those
very closc to the goal node.  This suggests that during most of the scarch process good
and bad paths are not distinguishable.
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In the section on Planning and Uncertainty Management we will
introduce a general mechanism for converting procedures such as A* 1nto
anytime problem solvers. As we show there it is possible to interrupt the
search process and request not only the best path so far, but also a
probability estimate that the current best path is a “good” path.

Finally, it should be noted that the visibility graph approach
described above is amenable to real-time planning/replanning problems.
By precomputing the shortest path between various regions, the planner
can use these precomputed paths to quickly sclect alternative routes. A
discussion of this approach can be fcund in Meng, ctal. (1991) and Silbert
(1991).
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CHAPTER 2

CLASSICAL PLANNING:
USING SUBGOALS TO CONTROIL SEARCH

Beginning in the late 1960's a series of planners where developed
that have since come to be known as the classical planners.! The classical
planning approach is similar to Planning as Heuristic Search paradigm with
two significant differences:

1) They all use the same approach to defining actions and state-
spaces, and

2)  Search through the state-space i3 goal-driven.

The principal planners in this lineage are described below.

2.1 General Problem Solver (GPS)

One of the carliest automated planners was a system called the
General Problem Solver (GPS). Although GPS is not generally considered to
be a classical planner, it is widely regarded as the precursor to this line of
planners. GPS used a search procedure call means-ends analysis (Newell
and Simon, 1963). As applied to planning problems. means-ends analysis
begins with a description of the initial state, a desired goal state, and a set
of state-change operators. The principle operation of GPS 1is to iterate
through the following steps. Beginning with the initial state, GPS:

1. Compares the present state with the goal state to generate a
difference list.

2. IF the difference list i1s empty,
THEN exit with plan.

3. Select a statc-change operator that has a consequence the

removal of the first difference on the difference lists,

I'There is no clear definition of a classical planncr.  Although the planners
described in this section are usually considered classical, some would also consider
the planners described in Chapter 3 as also belonging to the classical planning
tradition.
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4. IF no operator is found,
THEN remove last operator added to plan,
reset the difference list, and
gc to 3 (to select a new operaior),

5. IF the operator can be executed,
THEN add it to the plan,
update the state description, and
go to 2.
6. IF the conditior- necessary to execute the operator are not
contained in the current state,
THEN add these conditions to the difference list and
go to 2.

Whenever step 2 finds no differences, GPS terminates and returns
the sequence of state-change operators it applied. This sequence is the
plan. When step 3 fails to find an operator, then GPS will backtrack on the
sequencc of operators to an earlier state, find a new operator to apply, and
continue processing. In short, GPS is a depth-first state space search
procedure where sibling nodes are ordered according to whether or not
they remove an element from the difference list.

2.2 Stanford Research Institute Problem Solver (STRIPS)

STRIPS 1is generally regarded as the first of the classical planners.
STRIPS was based on GPS, but some additional assumptions were made
about how states and state-change operators are represented (Fikes and
Nilsson, 1971). In STRIPS states are described as a list of propositions
which are sentences of the form BLOCK(A), CN(A,B), CLEAR(C), etc. (See
Figure 2-1). STRIPS state-change operators define different classes of
actions. Each operator is composed of:

1. A precondition lisy that lists ail propositions that must be
contained 1n the state description before the operator can be
executed,

2. an add list that lists the propositions that are added to the state

descripticin when th:s operator is applied, and
p P pp
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3. a delete list that lists the propositions to be deleted from the
state description when the operator is applied.

ON(C,TABLE)
ON(A, TABLE)
ON(B,A)
CLEAR(C)
TABLE CLEAR(B)
CLEAR(TABLE)

STATE STATE DESCRIPTION |

Figure 2-1: Example of State Description

Figure 2-2 shows some examples of state-change operators.

In STRIPS a planning problem is defined by a state description of the
initial state, a list of propositions that must be true of the goal state, and a
list of STRIPS operators. (Planning problems defined in this way will be
referred to as STRIPS problems.) STRIPS plans by searching for a
sequence of state-change operations (actions) that will transform the initial
state into a goal state (see Figure 2-3 for an example).

It is important to note that each new state in STRIPS is calculated by
adding and deleting the propositions listed in the add and delete lists of
the state change operator. Nothing else changes. In effect, STRIPS
assumes that the only relevant consequences of an action are those that
are always assoctated with that type of action. There are no side effects.
This assumption is prevalent in automated planners and is called the
STRIPS Assumption.
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Precondition Y # TABLE
List ] Y » TABLE Y % Z
ON(X,Y) ON(X,Y)
CLEAR(X) CLEAR(X)
CLEARC(Y)
Operation NEWTOWER(X) MOVE(X.,Y)
Delete List { - ON(X,Y) - ON(X,Z)
- CLEAR(Y)
: CLEAR(Y) CLEAR(Z)
Add List {ON(X,TABLE) ON(X,Y)
B Figure 2-2: Example of STRIPS Opcrations
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C s TABLE
C+#A
ON(B,A) CT
ON(C,TABLE) CLEAR(B) 82&&2%&%
ON(A.TABLE) CLEAR(C) CLEAR(B)
ON(B,A) —> MOVE(B,C) - » ON(B,C) ]
CLEAR(C) - ON(B,A) CLEAR(A)
CLEAR(B) - CLEAR(C) CLEAR(TABLE)
CLEAR(TABLE) ON(B.C) '
CLEAR(A)
B % TABLE
B # TABLE
ON(A, TABLE)
CLEAR(A) ON B
CLEAR(B) o \J(g'TA LE
L — 3 MOVE(AB) —> olw( ©)
- ON(A,TABLE) cf_ég}?() R
Og(‘f%?(B) CLEAR(TABLE)
CLEAR(TABLE)

Figure 2-3: Plan to Achieve ON(A,B) AON(B,C)

23
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STRIPS generates plans by maintaining a stack of goals and actions.
Let Stack be the stack maintained by STRIPS, G be the list of goals to
achieve, and S the initial state.

1. Set  Stack to G,

Plan to nil.
2. IF Stack is empty,
THEN exist with Plan
ELSE select first element (e) of Stack.
3. IF e 1s an action,
THEN mark current status of S, Stack and Plan as
backtrack point,
add ¢ to Plan ,
set S to update(e,S).
4, IF e is a goal and e is contained in S
THEN pop e from Stack.
5. If e is a conjunction of goals and not contained in S
THEN individually add each of the subgoals of ¢ to
Stack.
6. IF e is an individual goal and not contained in S
THEN find an action A which has e as a consequence

has has not been previously tried.
7. IF A 1s nil
THEN backtrack and go to 2.

8. IF A 1s not nil,
THEN add A to Stack,
add as a conjunction of goals the pre-conditions
of A to Stack,
set A to nil,
go to 2.

To illustrate STRIPS operations, consider again problem in Figure 2-1.
The initial stack begins with just the initial goal (ON(A,B) & ON(B,C)) and
via step 5 adds each part of the conjunction to the stack.
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ON(A,B) & ON(B,C)
ON(A,B)
ON(B,C)

STRIPS checks to see if the bottom goal is true in the current state.
It isn't.  STRIPS then searches for an operator to instantiate that (after
instantiation) has the bottom goal (ON(B,C)) on its add list. The instantiated
operator and its preconditions are added to the stack.

ON(A,B) & ON(B,C)

ON(A,B)

ON(B,C)

MOVE(B,C)

ON(B,A) & CLEAR(B) & CLEAR(C)

The current state contains CLEAR(C), CLEAR(B) and ON(B,A), su the
conjunction of these goals 1s popped from the stack. MOVE(B,C) is then
popped and added to an action list and a new current state is computed.
Since ON(B,C) 1s on the add list of MOVE(B,C), ON(B,C) will be true in the
new current state, so it is popped. ON(A,B) is not satisfied, a new action is
added to the stack. Here we choose MOVE(A,B). This results in the stack:

ON(A,B) & ON(B,C)
ON(A,B)

MOVE(A,B)

ON(A,TABLE) & CLEAR(A) & CLEAR(B)

CLEAR(B), CLEAR(A), ON(A,TABLE) and the conjunction of these three
are all contained in the current state. Consequently, the conjunctive goal is
popped from the stack. MOVE(A,B) is popped from the stack and added to
the action list. ON(A,B) is then popped from the stack. Finally, ON(A,B) &
ON(B,C) is checked. Since MOVE(A,B) does not have ON(B,C) on its delete
list, the new current state will still contain ON(B,C). Consequently, ON(A,B)
and ON(B,C) is satisfied. Since the stack is now empty, the goal has been
achieved. The action list {MOVE(B,C), MOVE(A,B)} becomes the plan.

The reader may have noticed that in the above cxample there was
usually more than one choice tor an operator to add to the plan. Also the
ordering of the ON(A,B) and ON(B,C) subgoals was fortuitous. If any of
these had changed., the resulting ntan would have included some
unnecessary steps.  In general, the quality ot a plan generated by a STRIPS
like systcim depends on o set of heuristics for ordering subgoals and
selecting actions.
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Although STRIPS works reasonably well, there are a some problems
that STRIPS can not solve properly. The most famous of these is the
Sussman Anomaly, shown in Figure 2-4. In this problem, the two goals
ON(A,B) and ON(B,C) can not be serialized. A plan which solves these goals
in sequence will inevitably include unnecessary actions. For instance, if
the goals are ordered ON(B,C) and ON(A,B), then STRIPS will likely generate
the plan

MOVE(B,C)
-->NEWTOWER(B)
-->NEWTOWER(C)
-->MOVE(A,B)
-->NEWTOWER(A)
-->MOVE(B.C)
-->MOVLE(A,B).

Inspired by this and other problems, a series of Al planners were
developed that are generally known as the classical planners.  Virtually all
of these planners used STRIPS-like state-change operators and made the
STRIPS assumption.

TABLE

Figure 2-4: The Sussman Anomaly
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2.3 Regression

Waldinger (1977) explored the technique of Regression.  For any
proposition P and action A, the regression of P over A (Regress[P,A))
specifies the conditions that must be true prior to executing A in order for
P to be true after executing A. For instance,

Regress[ON(A,B),MOVE(A,B)] = Clear(A) & Clear(B) & ON(A,z)

which are just the preconditions of MOVE(A B). Note that regression does
not presume that P and A are fully specified. For instance,

Regress|Clear(x), MOVE(A.y)] = (Clear(x) & x=/¢) or (ON(A,z) & x=z).

Using Regression, 1t is possible to specify how the goals in the Stack
relate, thereby allowing the planner to determine where in the stack an
action can be inserted. Consider how regression can be used to solve the
Sussman anomaly. Beginning as in STRIPS, the planner generates the
stack:

ON(A,B) & ON(B,C) a

ON(B,C) a

ON(A,B) a

MOVE(A,B) b
CLEAR(A) b
CLEAR(B) b
ON(A,z) b

Unlike STRIPSG, however, sets of goals and actions in the stack are
labeled as belonging to various protected sets. A protected set specifies a
set of goals that must all be true when the entire set is complete. For
instance. CLEAR(A), CLEAR(B) and ON(A,z) are part of the protected set b.
A protected set is determined by regression. For instance, set b is equal to
Regress[ON(A,B),MOVE(A,B)].

The stack 1is processed by sequentially moving through the stack
until an unachieved goal is found -- in this case CLEAR(A). An action and
its preccndition are inserted into thce stack prior to the goal, as long as the
inserted action does not undo ary previously achieved goals in the
protected set in which the goal has been inserted. Conunuing with the
cxample, the planner now inserts NEWTOWLER(C).  This results in the
following stack:
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ON(A,B) & ON(B,C) a

ON@B.C) a

ON(A.B) a

MOVE(A B) b

CLEAR(A) b
NEWTOWER(C) ¢
CLEAR(C) c
ON(C,A) c
CLEAR(B) b

ON(A,T) b

Note that the insertion of NEWTOWER(C) only interrupted set b. Since
Regress(CLEAR(B), NEWTOWER(C)]=CLEAR(B}, and
Regress[ON(A, T),NEWTOWER(C)]=ON(A,T),

CLEAR(B) and ON(A,T) will still be true after NEWTOWER(C).

Continuing this example further, suppose the planner now tries to
insert MOVE(B,C) as shown below:

ON(A,B) & ON(B,C) a
ONB,C) a

e MOVE(B,C)
ON(A.B) a CLEAR(C)
MOVE(A.B) b CLEAR(E)
CLEAR(A) b ON(B.T)
NEWTOWER(C) ¢
CLEAR(C) ¢
ON(C,A) ¢
CLEAR(B) b
ON(A,T) b.

Before it can insert this action, it must check to see if MOVE(B,C)
impacts ON(A,B). However, Regressf MOVE(B,C),CN(A,B)] = NIL. There 1s no
circumstance in which GN(A,B) will bz true immediately after the action
MOVE(B,C) is executed. Consequently, MOVE(B,C) can not be inserted into
any stack where ON(A,B) is protected and not rcestablished after the
MOVE(B,C) action. Since MOVE(B,C) i1s the only action that has ON(B,C) as a
conscquence, the current stack can not be completed.
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To repair this problem, the planner can now rcorder the goals in the
stack to avoid the problem that lead to the current dead end. Since the
attempt to achieve ON(B,C) impacted the protected goal ON(A,B), the
planners re-orders ON(B,C) and ON(A,B). Specifically, it reorders the stack
so that ON(B,C) occurs prior to the action that achieves ON(A,B). This gives
us the stack:

ON(A,B) & ON(B,C) a
ON(A,B) a
MOVE(A,B) b

ON(B.,O) a

CLEAR(A) b
NEWTOWER(C) c
CLEAR(C) C
ON(C,A) c
CLEAR(B)
ON(A,T)

o o

Now when we insert the action MOVE(B,C) we get the stack:

ON(A,B) & ON(B,C) a

ON(A,B) a

MOVE(A,B) b

ON@B,O) a

MOVE(B,C) d
CLEAR(C) d
CLEAR(B) d
ON(B,T) d
CLEAR(A) b
NEWTOWER(C) C
CLEAR(C) C
ON(C,A) c
CLLEAR(B) b

ON(A,T) b,

where we can confirm through regression that none of the actions impact
any of the previously achicved goals in the protected set.  This gives us the
final plan NEWTOWER(C)-->MOVE(B,C)-->MOVE(A,B).
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2.4 Nonlinear Planning

Another enhancement to STRIPS that is that of nonlinear planning
(Sacerdoti, 1977). Nonlinear planning is based on the idea that the actions
in a plan do not need to be fully ordered. Furthermore, a planner should
not impose an ordering on a set of actions unless it needs to. For instance,
in solving the Sussman Anomaly, a nonlinear planner might proceed by
initially splitting the two goals and finding plans to achieve ecach
individually. This is shown below.

NEWTOWER(C) ---> MOVE(A B)
MOVE(B,C).

Upon examining this plan, the planner dis rs a problem. Namely
that CLEAR(B), which is a precondition for MOVL.,,C), is on the Delete list
of MOVE(A,B). (A mechanism for discovering this type of problem is
discussed in the next section). Consequently, this plan will not work if
MOVE(A,B) occurs before MOVE(B,C). To resolve this problem MOVE(B,C)
must occur before MOVE(A,B), so thc plan is constraincd to satisfy this
ordering:

NEWTOWER(C) ---> MOVE(A,B)
MOVE(B,C).

However, this is still not satisfactory in as much as CLEAR(C), a
precondition of NEWTOWER(C), i1s on the delete list of MOVE(B,C).
Consequently, NEWTOWER(C) must be constrained to occur before
MOVE(B,C). This gives us:

NEWTOWER(C) MOVE(A,B) MOVE(B,C).

as the final plan.

2.5 Hicrarchical Planning

Realistically, complex planning problems require thai the planner
separatc  significant planning factors from details. Initially, a partial plan
is developed that accounts for the significant factors, after which details
arc worked out.  For instance, in planning a cross country trip, one should
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first identify the flight to take before worrving about the details of how to
get to and from each airport.

In the Al automated planning literature cach level of detail is
referred to as a level of abstraction. Planners that operate by generating
pians 2t decreasing levels of abstraction are called hierarchical planners
(Sacerdoti, 1977). For instance, multiple levels of abstraction can be
defined in a STRIPS problem by assigning priority levels to the
preconditions of an operator.  Hierarchical planning then proceeds by
initially generating a plan considering only first priority preconditions,
then inserting steps into the plan to account for second priority
preconditions, again with third priority preconditions, and so on. At cach
level of planning the plan generated at the previous level serves as an
outline to which additional actions are inserted.

Levels of abstraction can be defined in other ways as well. In
addition to prioritizing preconcitions, one can prioritize the operators
thcmselves or the operator consequences. Furthermore, operators and

propositions can be dcfined that are unique to each level of abstraction.
This is common in military planning where the units being planned change
with differing levels of command.

2.6 Planning and Learning

Although we do not review it in this document, it is worth noting
that research in the classical planning paradigm has often been associated
with research in automated learning (e.g., Fikes, etal., 1977; Minton, 1988).
The objective of this research is generally to improve the efficiency of the
search through the statc-space by extracting from previous plans macro-
operators and useful control rules.

2.7 Applications to Associate Technology

Most of the early work in Al planning was done as part of the
classical planning tradition.  Many of the techniques used by classical
planners (nonlinear planning, hierarchical planning, regression) are
embcdded in the more recent paradigms.

Regarding applications, however, classical planners are not well-
suited for assoctate systems. The limitations of the STRIPS representation
are usually to constricting to make this approach viable. Although there
are some domains for which STRIPS-like action models are heuristically
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adequate (e.g., Wilkins, 1988), these seems more the exception than the
rule. Indeed, as Chapman (1987) has noted, the STRIPS representation
even has difficulty handling blocks worlds problems where there are
blocks of more than one size.
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CHAPTER 3

PLANNING AS PLAN REFINEMENT

The plan refinement approach to automated planning, treats
planning as a process of constraint posting. That is, beginning with an
unconstrained plan (do anything), a series of constraints are posted until it
can be determined that any further instantiation of the actions specified
consistent with the posted constraints, will achieve the specified goal. This
approach is also sometimes called least commitment planning.

The plan refinement approach 1s closely associated with the classical
planning tradition described in the last section. Many of the ideas grew
out of nonlinear planning approach where temporal constraints are only
posted when necessary. Stefik (1981) deveioped this idea further by
developing a planner that operated by posting variable constraints.

Planners in this tradition fall into two groups. The first group
represents a set of planners that address problems that conform to the
STRIPS represent.  The second represents planners that are designed to
handle a broader spectrum of constraints.

3.1 TWEAK

Nonlinear planning is an example of least commitment planning. In
this approach, a plan 1s viewed as a list of constraints and the process of
planning is one of adding additional constraints to the plan. The constraint
posting process is complete when it can be shown that any further
constraints on the actions specified will still result in achieving the goal.

In Sacerdoti's nonlincar planner constraint posting was limited to
tcmporal constraints. Ilowever, other types of constraints are possiole. In
fact, it has been shown (Chapman, 1987) that only three types of
constraints are required to solve STRIPS problems:

operator insertions - specifies an operator the must be executed,

variable constraints - restricts the set of possible values for a
variable in an operator, and

temporal constraints - requires that a pair of operators be cxecuted

33

BDM/V5Q-91-0742-TR



BDM INTERNATIONAL, INC.

in a certain order.

TWEAK (Chapman, 1987) is a planner that operates entirely ty
constraint posting. TWEAK's processing 1s based on a plan evaluation
mechanism called the necessary truth criterion. Given the STRIPS
assurnption, a plan is guaranteed to solve a STRIPS planning problem if
and only if every goal and precondition satisfies the necessary truth
criteria.

In order to state the necessary truth criterion, we need define the
following.

Codesignation - A proposition P codesignates with Q (P==Q) if they
represent the same relation and must have the same values for the
variables. For examples CLEAR(A)==CLEAR(A). x=y implies
ON(A,x)==0N(A.y). On the other hand, x=zvy implies
~(CLEAR{x)=CLEAR(y)).

Asserted-in - A proposition P is asserted in a state s (written asserted-
in(P,s)) if and only if P is true in state s.

Asserts - An action A asseris a proposition P (asserts(A,P)) if P is on the
add list of A.

Denies - An action A denies a proposition P (denies(A,P)) if P is on the
delete list of A.

Necessarily - Given a list of constraints, necessarily P (written []P) is
true if and only if no additional variable or temporal constraints can be
consistently added which would result in ~P. For instance, if we begin
with the Sussman anomaly, then the single action plan MOVE(B,C) would
be sufficient to deduce []Es asserted-in(ON(B,C),s). That is, there is
necessarily a state in which ON(B,C) is true.

With the above definition, the necessary truth criterion can be
formally stated as follows.

[Jasserted-in(P,s)
il and only if

[13t  (t<s) & asscried-in(P,t) A
vC |](s<C) v
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[C<vv
vQ | ]~denies(C.Q) v
[] <Q=F) v
W [(C<W A
[JW<s) A
IR asserts(W.R) & P==Q —» Q==R.

where P, Q and R are propositions, C and W are actions, and t and s are
possible states. In words, the necessary truth criterion reads somewhat as
follows: "For any proposition P and state s, P is necessarily true in s if
I. it is necessarily the case that before s there is a state t containing P,
I1.  for any action C, that action

Ila. occurs before t or after s, or

I'b. C never denies P, or

IIc. whenever C denies P, there is another action W which

IIc1. occurs after C and before s, and
IIc2. asserts P.

A plan is labeled successful if each goal is necessarily true in the
final state, and each precondition of each action is necessarily true in the
state in which the action is performed. Whenever a goal or precondition is
not necessarily true in the appropriate state, then a violation of the

necessary truth criterion has occurred.

Using the necessary truth criterion, TWEAK proceeds to solve
planning problems as follows.

1. Examine current list of constraints for violations of necessary truth
criterion.

9

. If no violations exist, exit with current constraints as the plan.

. If a violation cxists, find a constraint that removes violation.

(W8]

4. If no constraint can be found. backtrack on the constraint last posted
and go to I.
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5. If a constraint is found, posi the constraint and go to |I.

To illustrate the operation of TWEAK cansider, for one last time, the
Sussman anomaly. TWEAK first checks to sce if the goals ON(A,B) and
ON(B.C) are contained in the current state. Since they are not, and the plan
is currently null, the necessary truth criterion i1s violated for both of these
goals.  This results in adding two step constraints and several variable
constraints to the constraint list.

CONSTRAINT TYPE CONSTRAINT
STEP INSERTION MOVE(x1.y1)
VARIABLE CONSTRAINT x1=A
VARIABLE CONSTRAINT y1=B

STZP INSERTION MOVE(x2,y2)
VARIABLE CONSTRAINT x2=B
VARIABLE CONSTRAINT y2=C

The current plan 1s shown in Figure 3-1. Note that the two actions
are unordered. The current plan is not guaranteed to achieve a goal state
because some of the preconditions are not necessarily true. For instance,
ON(A,z1) is not necessarily true simply because z1 could be instantiated to
an object other than TABLE. Similarly for ON(B,z2). Also CLEAR(B) is not
necessarily true because there is an action MOVE(A,B) which denies
CLEAR(B), that could be executed prior to the situation in which CLEAR(B)
needs to be true. This suggests adding three additional constraints as
shown below:

Y1 # TABLE C # TABLE
Y1 s 21 C# 22
ON(A.ZD) ON(B.Z2)
"CLEAR(A) CLEAR(B)
CLEAR(B) CLEAR(C)
MOVE(A,B) MOVE(B.C)
- ON(AZ1) - ON(B.Z2)
- CLEAR(B) - CLEAR(O)
CLEAR(ZD) CLEAR(Z2)
ON(A,B) ON(B,O)
Figure 3-1: First Parual Plan
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CONSTRAINT TYPE CONSTRAINT

STEP INSERTION MOVE(x1,y1)

VARIABLE x1=4

VARIABLE y1=B

STEP INSERTION MOVE(x2,y2)

VARIABLE x2=B

VARIABLE y2= .

VARIABLE 21=TABLE

VARIABLE 22=TABLE

TEMPORAL ORDER MOVE(x2,72) before MOVE(x1,yl).

The current plan is now shown in Figure 3-2. It is still not complete
since CLEAR(A) is still not satisficd. Since no additional variable or
temporal order constraints can be added, a new step is added to the plan
that asserts CLEAR/A). This new step must occur prior to the situation in
witich CLEAR(A) is needed. 7This iesults in the following constraint list.

B # TABLE C # TABLE
B = TABLE C = TABLE
ON(A,TABLE) ON(B,TABLE)

* CLEAR(A) CLEAR(B)
CLEAR(B) CLEAR(C)
MOVE(A.B) PP A— MOYVE(B,C)

- ON(A,TABLE) - ON(B,TABLE)

- CLEAR(B) - CLEAR(QC)
CLEAR(TABLE) CLEAR(TABLE)
ON(A,B) ON(B,C) 0

Figure 3-2: Second Partial Plan
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CONSTRAINT TYPE CONSTRAINT

STEP INSERTION MOVEx1,yl)

VARIABLE x1=A

VARIABLE yl1=B

STEP INSERTION MOVE(x2,y2)

VARIABLE x2=B

VARIABLE y2=C

VARIABLE z1=TABLE

VARIABLE 22=TABLE

TEMPORAL ORDER MOVE(x2,y2) before MOVE(x1,yl)
STEP INSERTION NEWTOWER(x3)

VARIABLE x3=C

VARIABLE z3=A

TEMPORAL ORDER NEWTOWER(x3) before MOVE{x ,y1).

The current plan is shown in Figure 3-3. There is one final problem.
The precondition CLEAR(C) is denied by the action MOVE(B,C).
Consequently. MOVE(B.C) must occur before CLEAR(C) is needed. This
vesults in the final constraint list:

B % TABLE C # TABLE

B = TABLE C # TABLE
A = TABLE ON(A,TABLE) ON(B,TABLE)
ON(C,A) CLEAR(A) CLEAR(B)
*CLEAR(C) CLEAR(B) CLEAR(C)
NEWTOWER (C)| ——» | MOVE(AB) <« MOVE(B,C)
- ON(C,A) - ON(A,TABLE) - ON(B,TABLE)
CLEAR(A) - CLEAR(B) - CLEAR(C)
ON(C,TABLE) CLEAR(TABLE) CLEAR(TABLE)

ON(A,B) ON(B,C)

Figure 3-3: Third Partial Plan
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CONSTRAINT TYPE CONSTRAINT

STEP INSFRTION MOVE(x1,yl)

VARIABLE x1=A

VARIABLE yi=B

STEP INSERTION MOVE(x2.y2)

VARIABLE x2=B

VARIABLE y2=C

VARIABLE z1=TABLE

VARIABLE 22=TABLE

TEMPORAL ORDER MOVE(x2,y2) before MOVE(x1,yl)
STEP INSERTION NEWTOWER(x3)

VARIABLE x3=C

VARIALLE z3=A

TEMPORAL ORDER NEWTOWER(x3) before MOVE(x1.yl)
TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2.y2).

The final plan is shown in [Figurc 3-4.

Note that the performance of TWEAK depends on the selection of
constraints to add to the plan. In the above example, we fortuitously
selectcd the best constraint to add at each choice point. In general the
quaiity of the plans generated by TWEAK will depend on the heuristics for
sclecting among alternative possible corstraints.

B = TABLE C # TABLE
B % TABLE C # TABLE
A % TABLE ON(A,TABLE) ON(B,TABLE)
ON(C,A) CLEAR(A) CLEAR(B)
*CI.LEAR(C) CLEAR(B) CLEAR(C)
1 [

NEWTOWER (C)| ——»| MOVE(B,C) <«— | MOVE(A,B)

- ON(C,A) - ON(A.TABLE) - ON(B,TABLE)
CLEAR(A) - CLEAR(B) - CLEAR(C)
ON(C. TABLE) CLEAR(TABLE) CLEAR(TABLE)

ON(A,B) ON(B.C)
Figure 3-4: Final Plan
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In some ways TWEAK is the culmination of the line of re<earch in
classical planners. This i1s because TWEAK satisfies the following property
(Chapman. 1987).

Property 1: For any STRIPS problem, TWEAK will find a plan in finite
time if one exists. If no plan exists, TWEAK will either return with no
solution or will continue processing.

Furthermore, for STRIPS problems in general one can show the following
property.

Property 2: There does not exist a procedure which is guaranteed to
terminate in finite time for all STRIPS problems without a solution, yet
still be guaranteed to find a solution if one exists.

In other words, from a decidability perspective, no planner can
improve on TWEAKs performance. Although there are other planners that
are more efficient than TWEAK (e.g., McAllester and Rosenblitt, 1991),
rundamental improvements are not possible.

3.2 Context-Dependent Consequences
One of the principle criticisms of planners designed to handle STRIPS

problems is that the add/delete model of action consequences is unrealistic
and severely constrains the class of problems to which these planners can

be applied. The main problem 1is that add/delete lists are context
independert. An action has the same consequences no matter what
situation the action is executed in. As a result, add/deiete lists are

sometimes difficult te specify. Consider, for instance, a blocks world with
blocks of several different sizes. In this domain, the consequences of
MOVE(A,B) depends on the size of blocks A and B and the amount of free
space initially on block A. In short, the consequence of MOVE(x,y) is a
function of the input sitnation and cannot be specified with a context
independent add/delete list.

Also, simple add/delete list make it difficult to plan in multi-agent
environmenis, where the consequence of an action depends on the actions
simultaneously being pursued by other agents.

To overcome these limitations, several researchers have c¢xtended

the classical and nonlinecar planners to incorporate context-dependent
consequences. Formal thecory development (e.g., Pcdnauiy, 1988) has
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resulted in the specification criteria that are comparable to the modal truth
criterion but are applicable to operators with context-dependent
consequences. Unfortunately, when context-dependent effects are allowed,
the problem of determining whether a proposed plan violates these
critecria i3 no longer decidable. Consequentially, even if a plan exists a
planner that allows context-dependent consequences can not be
guaranteed to terminate with a solution.

Implemented planners with context-dependent effects take a more
practical approach. The most well-known example i1s Wilkin's (1988)
System f{or Interactive Planning and Execution (SIPE). In SIPE, a
predetermined set of context-dependent effects are calculated as needed.
This approach is not guaranteed to generate sound plans, but 1s according
to Wilkins "heuristically adequate.” It is unlikely that SIPE will generate a
plan where an uncalculated context dcpendent effect makes the plan
unsound.

It is important to note that both Wilkins and Pednault make what
Wilkins calls the Extended STRIPS Assumption. This assumes that the only
things 1hat change as a consequence of an action arc the direct
consequences of that action (e.g., added and deleted propositions), and
indirect consequences that can be deduced as having changed. That is, any
statement P that was true prior to executing an action is assumed to be
true after th= action is executed, unless it can be deduced that it is possibly
false.

3.3 Generalized Constraint Processing

The general idea of plan refinement is that the planner posts
constraints until it is satisfied (by some evaluation criteria) ihat any
specific plan that is consistent with all posted constraint will achieve the
goal state. This general strategy is not limited to domains satisfying the
STRIPS assumption, but can be applied to any domain wherc constraints
can be specified. Although this approach to planning has not been
articulated as an 1ndependent paradigm, there is a great deal of theoretical
and applied work that follows this perspective. This work includes the
following,

Constraint Reasoning - There 1s a growing literature directly addressing

constraint satisfaction problems (Mackworth, 1987). These systems
accept as input a set of variable constraints and attempt to prove the
consistency or inconsistency of these constraints.  Often consistency
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proofs are achieved by finding specific values that will satisfy all
constraints.

Temporal Constraint Reasoning - An important class of constraints deals
with temporal variables. Here the objective is to determine if a set of
temporally ordered statements (e.g., E1 before E2, E2 starts after 3:00,
El ends after 2:30, ...) 1s consistent. Here the approaches differ
depending on whether they deal with qualitative constraints on time
intervals (e.g., Allen, 1983; Ligozat, 1991), quantitative constraints ona
time points (e.g., Dechter, et. al., 1989), or some combination of
gualitative and quantitative constraints (c.g., Kautz, H. and Ladkin, P.,
1991). In either case these techniques are emerging as a powerful tool
for reasoning about the temporal consistency of a proposed plan.

Temporal Data Managscment - As described by Dean and McDermott
(1987) Temporal Data Base Management Systems (TDMBS) go beyond
temporal constraint rcasoning. They also provide some non-monotonic
temporal inferencing.  For instance, after asserting that proposition Pl
becamec true after action Al ccecurred, a TDBMS would "assume”™ Pl
remained true until some other event occurs that would make Pl
possibly falsc. This allows thc TDBMS to makc stronger deductions than
are warranted by simple temporal constraint reasoning. For instance,
from the statements:

TRUE(P1,t) & OCCURS(E1,t) --> TRUE(P2,t+1),
TRUE(P1,T1),

OCCURS(E1,T2),

T2>Tl,

a TDBMS could deduce TRUE(P2,T2+1) because it had no reason to
deduce that between titnes Tl and T2 the proposition P1 might become
false.

Temporal Data Management and Reason Maintenance - In addition to
non-monotonically jumping to conclusions, the TDBMS must also be able
to rctract these infeasible inferences. In the above example, for
instance, if the TDBMS later learns

OCCURS(E2,T3)
OCCURS(E2,t) --> ~TRUE(P1 t+1),
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then the TDBMS should retract the deduction TRUE(P2,12+1) because T3
may be after Tl but before T2.! To achieve this, the TDBMS needs to
incorporate a reason maintenance capability to keep track of the
justification for each non-monotonic conclusion. Dean and McDermott's
TDBMS had some rcason maintenance capability. Recent work in this
area (Hamscher, 1991; Goldstone, 1991) have further developed the
relationship betwcen temporal constraint reasoning and reason
maintenance systems.

In addition to the theoretical work, the plan refinement approach is
also found in a number of application systems. A well known example is
the TEMPLAR (Tactical Expert Mission Planner). This system fills out a
daily air tasking order by sequentially posting a sequence of resource
constraints (t.e., cach aircraft, ordnance, ctc. assignment is processed as a
constraint on that resource). Another c¢xampie 1s fourd in Meng and
Lehnert (1991) where strike plans are directly represented as a set of
temporal constraints.  Maintaining consistency between multiple plans is
then trecated as a temporal constraint satisfaction problem.

3.4 Skcletal Planning

In the above discussion, we assumed that the planning process
begins from scratch. However, in some systems planning begins by
retrieving a partial partial plan that contains the major sieps of the plan.
A pre-stored partial plan is often rcferred to as a skeletal plan. Skeletal
planning 1s a variant of the constraint-based approach that solves planning
problems by trying to instantiate one of a set of pre-stored skeletal plans
(Stefik, 1981). Each skeletal plan can be viewed as a sct of hard
constraints.  Additional constraints are added until the plan is complete (as
determined by a mechanism such as the necessary truth criteria), or it is
determined that the skeletal plan cannot be instantiated (i.e., a hard
constraint needs to be retracted).

VAlternatively, it may recognize that the conclusions TRUL(P2, T2+1) is justificd
by the assumption T3>72 or 13<T1.
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3.5 Relevance to Associate System Technology
3.5.1 Plan Generation

The plan refinement approach is very general. In principle, any
mission planning problem can be addressed using this paradigm. However,
to effectively anply this paradigm to mission planning two issues must be
addressed. First, we need to identify how to represent constraints relevant
to mission planning. Second, we need to specify « reasonable mechanism
for searching through the space of partial plans. One approach to
address;ing both of these issues is provided below. Although the approach
described below can certainly be improved upon, it does illustrate the
main point. Namely that mission planning is a problem domain that is
fully amenable to a constraint posting approach i{o automated planning.

The problem of representing constraints is not trivial. Any
constraint language one develops should satisfy several criteria. First, the
full spectrum of constraints relevant to mission planning should be
representable. 1t does little good to develop a language that can only
handle a subset of the constraints, since solutions satisfying these
constraints are as likely as not to be unrealistic. Second, the constraint
language should be understandable to the user community -- mission
planners. This will make it convenient for the users to control the
automated planning process. Third, the language should conform to
standard Al practices. Otherwise, the mapping of appropriate Al
techniques becomes more difficuit.

As it turns out, there already exists within the mission planning
community a set of well-defined models that can be used to characterize
and cvaluate proposed missions. These models are in the form of functions
that predict various mission characteristics as a function of input variables.
Figure 3-5 shows graphically the functional relationships tetween some of
the variables that characterize a mission plan. For each node in the graph
a function is defined that specifies the value on that node as a function of
the values on the input nodes. Consequently, these functions can be used
to assess winether a fuliy specified mission plan satisfies a set of goal
constraints.

The constraint posting paradigm requires a mechanism to evaluate
partial plans.  This 1s achieved by using a set of simple heuristics to
temporarily complete a plan, and then cvaluate the completed plan. In
this way. a worst case completion of a pardal pian is generated. If the
worst case completion satisfies the goal constraints then the partial plan 1s
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accepted, since the planner now knows that a satisficing completion of this
partial plan is always achievable. In addition, a set of best case estimates
are also needed. For each incomp. te segment of the plan a heuristic
overestimate of the best possible value achievable on the goal criteria is
calculated. For instence, if two way points have been specified, but not the
route between them, then minimum fuel consumption can be specified
using a high altitude, straight line path.

The process of planning may now proceed very much as it does in
TWEAK. The goal state is characterized as a set of hard constraints (time-
over-target, other timing constraints, required way points, etc.) and
evaluation criteria (minimum probability of arrival, minimum probability
of destruction, etc.). Beginning with this initial list, planning proceeds as
follows:

1. Using the current list of constraints, evaluate the worst case plan to
determine if any criteria are violated.

2. If no violations exist and the plan i1s complete, exit with current
constraints as the plan.

3. If no violation exists and the plan is incomplete, heuristically select
constraints that will improve the plan on the evaluation criteria.

4. If a violation exists, heuristically select constraints that will improve
the plan on the violated evaluation criteria.

5. Evaluate the plan using the best case estimates and determine if any
evaluation criteria are violated. If there is a best case violation,
backtrack on the most recently posted constraints,

6. If backtracking fails, exit with no plan.
7. If constraint are found, post the constraints.
8. Go w0 1.

As the above discussion illustrates, the general mission planning
problem is compatible with a constraint processing approach. There are,
however, two possible problems with this approach.  First, the plan
refinement paradigm is a satisficing paradigm. There is no guarantee that
a plan generated via plan refinement will be the lowest cost or even a low
cost plan. This contrasts sharply with globally-directed scarch procedures,
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such as A*, that alwavs generate the lowest cost path. Indeed even for
moderately complex problems there i1s some evidence (Freeman, 1991)
that indicates that a STRIPS-like approaches will generate very poor plans.
Second, the efficiency of this procedure is unclear. There is no a priori
reason to believe that searching through a large space of possible
constraints involves a lesser compuiational burden than searching the
state space.

One way around both of these problems i1s to rely on a carefully
engineered library of skeletal plans each of which specifies the main steps
in a plan. When skeletal plans are used, then the focus of the plan
refinement process is to instantiate the skeletal plan. Often this is just a
matter of finding values for the variables in the skeletal plan, although
scme temporal ordering and step insertion constraints may be involved. If
the refinement process begins with a reasonable skeletal plan, then a
satisfactory plan should be quickly generated.

3.5.2 Plan Modification

Refinement based procedures are not particularly well-designed for
addressing plan modification problems. The principal way to do plan
modification (e.g., Wilkins, 1988) is to (1) identify why the current plan is
invalid, (2) sequentially remove constraints until a partial plan is found
that is no Jonger invalid, (3) initiate the refinement process using the
partial plan as the starting point. In short, replan by beginning with a
partial, but viable plan. Note that this approach is likely to show a
tendency to find modified plans that just barely avoid the initial problem.

3.5.3 Real-time Planning

The most obvious approach to achieving real-time performance with
the plan refinement strategy is to rely on a library of well-engineered
skeletal plans. Planning then becomes a relatively simple problem of
selecting and instantiating appropriate skeletal plans. Skeletal planning is
the approach used for generating tactical advice in the Pilot's Associate.
The main weakness of this approach is its dependence on the quality of the
skeletal plans. It presupposes an ability to anticipate the problems that an
operator will face and to engineer a priori solutions to those problems.

An alternative approach to achieving real time performance has been
recently suggested by Boddy (1991). Boddy's approach is to employ two
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levels of problem solvers. The first level 1s a constraint posting problem
solver that sequentially adds consistent temporal and variable constraints
to the plan. The second is a simple and quick problem solver that will
quickly complete any partial plan, but without any guarantee of avoiding
constraint violations. Planning proceeds by using the constraint posting
prcblem solver, but if the planning process is intcrrupted with a need for
an immediate answer, then the more rapid problem solver can be invoked
to quickly complete the plan. In this way anytime problem solving (Dean
and Boddy, 1988) behavior is achieved; where the quality of a plan
improves as time available for problem solving increases.
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CHAPTER 4

PLANNING AS PLAN TRANSFORMATION
AND CASE-BASED PLANNING

In the plan refinement paradigm planning is achieved by beginning
with a null or abstract (skeletal) plan and incrementally adding details to a
plan. There is no mechanism for modifying a detailed plan to fit a new
situation. In contrast, the plan transformation paradigm suggest that
planning is often a matter of modifying a detailed plan so as to fit a new
circumstance. Proponents of the transformational approach seem to differ
as to the extent to which they claim planning is solely a matter of detailed
plan transformation. There seem to be three loose camps

Transformations for Plan Repair - Plan transformations are primarily
useful for addressing plan repair problems. An initial plan may have been
carefully constructed using the refinement approach and transformations
are used to repair the plan when unexpected events occur (e.g., Wilkins,
1988; Ambros-Ingerson & Steel, 1988).

Transformations for Plan [Improvement - Plan transformation can be
used to transform a hastily constructed plan’into a viable plan. Plan
generation is achieved by using a crude mechanism for generating an
initial plan and then modifying that plan until a satisfactory plan emerges
(e.g., Linden, 1987).

Casc-Based Planning - Planning is largely a matter of adapting plans
that have worked in similar situations. Through experience the planner
builds a library of past cases. When addressing a new problem, a retrievai
mechanism posts a plan that worked in a similar situation. The retrieved
plan is then modified to fit the particulars of the current situation
(Hammond, 1989).

4.1 Mechanisms for Plan Transformation

All three of the transformational paradigms require an effective
procedure for modifying a plan. By far the most common approach is to
use a set of failure-fix rules, where the precondition of the rule i1s a
problem test (a "failure™) and the consequence of the rule is a procedure
for modifying the plan (a "fix"). Failure-fix rules can range in complexity
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from very simple rules (e.g., drop a variable binding) to a complex set of
changes that represents a single modification.

To illustrate the process of plan transformation, consider the problem
shown in Figure 4-1. Assume a hypothetical planner that must move the
blocks from the initial state to the goal state. As in Section 3.0 we will
assume that plans are rcpresented as a set of constraints. Since the plan
generated by TWEAK achieves a goal with the same structure as the
current goal, it is recalled as a plan to try to transform. We therefore
begin with the following plan.

E

E

D E F F
Initial State Goal State

ligure 4-1: Blocks World Problem for ‘Transformational
Planning Example
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CONSTRAINT TYPE CONSTRAINTS MQODIFICATION
STEP INSERTION MOVE(x1,yl) NONE
VARIABLE x1=A

VARIABLE yl1=B

STEP INSERTION MOVE(x2,y2)

VARIABLE x2=B

VARIABLE y2=C

VARIABLE z1=TABLE

VARIABLE z2=TABLE

TEMPORAL ORDER MOVE(x2,y2) before MOVE(x1,yl)
STEP INSERTION NEWTOWER(x3)

VARIABLE x3=y2

VARIABLE z3=x1

TEMPORAL ORDER NEWTOWER(x3) before MOVE(x1,y1)
TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2,y2).

Upon evaluating this plan, our hypothetical planner notes that the

objects A, B, and C are not relevant to the current problem. This "incorrect
bindings" problem can be repaired with an "unbind variables” procedure.
This leads to the following constraint list:

CONSTRAINT TYPE CONSTRAINTS MODIFICATION
STEP INSERTION MOVE(x1,y1)

VARIABLE unbind(x1)
VARIABLE unbind(yl)
STEP INSERTION MOVE(x2,y2)

VARIABLE unbind(x2)
VARIABLE unbind(y2)
VARIABLE z1=TABLE

VARIABLE z2=TABLE

TEMPORAL ORDER MOVE(x2,y2) before MOVE(x1,yl)
STEP INSERTION NEWTOWER(x3)

VARIABLE x3=y2

VARIABLE z3=x1

TEMPORAL ORDER NEWTOWER(x3) before MOVE(x1,y1)
TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2,y2).

Now the planner notices that the goal state ON(D.E) is not asserted

anywhcre 1n the plan,

This problem can be repaired by binding x1 to D
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and yl to E. Similarly, ON(E,FF) can be asserted by binding x2 and y2
appropriately. This results in the following plan.

CONSTRAINTTYPE CONSTRAINTS MODIFICATION
STEP INSERTION MOVE(x1,y1)

VARJABLE x1=D bind(x1)
VARJABLE yl=E bind(y1l)
STEP INSERTION MOVE(x2,y2)

VARIABLE x2=E bind(x2)
VARIABLE y2=F bind(y2)
VARIABLE z1=TABLE

VARIABLE 22=TABLE

TEMPORAL ORDER MOVE(x2,y2) before MOVE(x1,yl)
STEP INSERTION NEWTOWER(x3)

VARIABLE x3=y2

VARIABLE z3=x1

TEMPORAL ORDER NEWTOWER(x3) before MOVE(x1,y1)
TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2,y2)

At this point the planner discovers that the consequences of
NEWTOWER(F) are already true in the current state. Consequently, the
plan has an "irrelevant action” problem that can be repaired with a
"remove action” procedure. This leads to the final plan:

CONSTRAINTTYPE  CONSTRAINTS MODIFICATION

STEP INSERTION MOVE(x1.y1) remove
NEWTOWER(x3)

VARIABLE x1=D unbind(x3)

VARIABLE yl=E unbind(z3)

STEP INSERTION MOVE(x2,y2)

VARIABLE x2=E

VARIABLE y2=F

VARIABLE 21=TABLE

VARIABLE 22=TABLE

TEMPORAL ORDER MOVE(x2,y2) hefore MOVE(x1,yl)

As this example illustrates, a set of failure-fix rules can be used to
transform an invalid plan into one that is valid. Our hypothetical planner,
however, 1s lacking one feature ofter found in transformational planner - a
plan justification (Ambros-Ingerson & Steel, 1988, Kambhampati, S., 1990).
Plan justifications are a record of why ecach element of the plan was added.
Such a record makes 1t easier to 1identify appropriate transformations,
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since the justifications can be examined to determine if they are still valid.
For instance, in the plan generated by TWEAK, the action NEWTOWER(x3)
& x3=x1 was added to the plan so that a precondition of MOVE(x1,yl)
could be established, nomely CLEAR(x1). In the situation described aobove,
once x1=D the condition CLEAR(x1) was truc in the situation prior to
NEWTOWER(x3). Consequently, the justification tfor including
NEWTOWER(x3) in the plan becomes invalid.

4.2 Case.Based Planning

The case-based planning paradigm emphasices the importance of
episodic memory in automated planning. Through experience the planner
builds a library of cases where each case represents a specific episode that
is relevant to planning. Episodic case information is used in a variety of
ways. As discussed in Hammond (1989) these include:

Problem Anticipation - Potenuai planning problems are identified by
matching current situation features with features of cases of past
planning problems.

Plan Retrieval - Plans are retrieved by finding previous plans that
match as many of the current goals as possible while minimizing the
number of problems anticipated.

Plan Modificativn - Fiaus are modified by applying a set of failure-fix
rules. These rules may themselves be retrieved by recalling cases of
similar failure and the modifications that corrected those failures.

Plan Repair - Like plan modification, plan repair involves applying
failure-fix rules that may correspond to previous of cases plan failure
and repair.

The success of a case-based planner depends in large measure on its
ability to appropriatcly index and retrieve relevant cases and
modifications. If the retrieval mechanism retrieves inappropriate cases,
then it 1s unlikely that the case-based planner will iterate to a satisfactory
plan.
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4.3 Relevance to Associate Technology
4.3.1 Plan Generation

For plan generation the transformational paradigm is comparable to
the refinement paradigm. A transformation can be treated as two
refinement steps: (1) relax some constraints and (2) post new constraints.
The principal difference is that the transformational approach begins the
search process with a specific plan. whereas the refinement approach
begine with a null or skeletal plan. There 1S no a priori reason to believe
that one or the other approach will be more efticient or generate better
plans. Rather efficiencv and plan quality will depend more on the initial
starting point (skeletal plan or case) and the nature of the refinements
(transtormations) than on any inherent charactenstic of the paradigm.

The SOAS project i1s currently committed to a transformational
approach (Berg-Cross, 1991). In particular, the planner architecture in
SOAS uses a vanant of the case-based approach. The SCAS planner uses a
case-based planning architecture. However, rather than rely on episodic
memory the cases are knowledge engineered. In this way, the planner is
likely to find "cases” of plans and plan modifications that are applicable to
any situation cncountered.  This 1is similar to the skeletal planning
approach used in Pilot's Associate except that rather than instantiating a
knowledge engineered skeletal plan, the SOAS planner must modify a
knowledge engineered detailed plan.

4.3.2 Plan Modification

A transformation can be viewed as the compnilation of several
refinement steps. Conse¢quently the refinement and transformational
approach are comparable in addressing plan modification problens.
However, a planner that uses a well-enginecred set of transformations is
likcly 1o be considerable more efficient than a refinement-based approach.
This will be particularly true if the refinement procedures requires that
the planner search through multiple possible sequences of refinements
beforc it "discovers” the successtul transtformation,

4.3.3 Real-time Planning

As with plan gencration n gencral, the quality and efficiency of real-
time planning will depend on the quality of the implementation -- and not

wh
£
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whether a  refinement or transformational approach is selected.
Particularly key to the transformational approach is whether the retrieval
mechanisro  qaickly i1dentifies appropriate modifications or whether the
rlanner must backtrack from a set of inappropriate modifications.  As
noted above. SOAS attempts to rapid planning by carefully selecting
appropriate initial plans and modifications.
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CHAPTER 5§

PLANNING FROM FIRST-PRINCIPALS

Within Al there is strong tradition of logicism -- a general approach
to rcasoning that attempts to reduce every problem to formal logic. This is
true in automated nlanning as well. Specifically, the pure logicist would
use statements in a formal logic to represent a problem domain and then
proceed to use automated theorem proving techniques to find a plan.

A formal logic is wusually composed of three parts: language,
deduction system, and semantics. The language specifics all the allowable
symbols of a logic and how those symbols may be combined to form
statements.  The deduction system spectfics how to apply the language to

generate  deductions. The semantics specify what the symbols and
staternents in a language "mean”. Here "meaning” typically 1s defined by

what cach eclements of the language dcnotes or represents.  For instance,
the simpic statement ON(A,B) is intended to represent a situation where
the block that symbol A denotes has the relation on top of with respect to
the bleck that symbol B denotes, where on top ¢f is a rclation that the
symbol ON denotes.

In the philosophical logic literaturc, there is a long standing debate
as to the adequacy of alternative logics (Haack, 1978). Classical logicians
arguc that the only correct and necessary logic 1s predicate calculus,
specifically first-order predicate calculus (FOPC). Nonclass'cal logicians
suggest that predicate calculus is generally inadequate and that alternative
logics are appropriate for different circumstances. The debate between
classical and nonclassical logic 1s aiso found in the Al literature. For
virwally any type cof automated reasoning problem one finds both a
classical and nonclassical approach to addressing that problem.

In this chapter, we will focus on the application of FOPC to
automated planning and o simple extension calied default logic.  All of the
major 1ssues can be demonstrated using these logics.

5.1 Lirst Order Predicate Calculus (FOPC)
As mentioncd above a logic is composed of three clements: language,

deduction  system and  semantics. LLach of these parts for IFOPC are
described  below,
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5.1.1 Language and Intended Denotation

The symbols of FOPC and their intended denotation are described
below.!

Constant symbols serve as names for the objects being denoted.
Variable symbols serve to denote any cf a set of objects.

Function symbols reference functions that map from one or more
objects into an object.

Predicate syvmbols denote propertiecs of individual objects and
rclations between objects.

Any constant or variable symbol 1s a term. Any function of a term(s)
is also a term. A predicate with the correct number of terms as arguments
is called a well-formed formula (wff) or u statement. For example, the wff
Type-label(AC#7,F-14) denotes ihat the object denoted by the <constant
symbol AC#7, and the object denoted by the constant symbol F-14 have
the relation Type-label. Similarly, the expression Is-
pilot(commander(AC#7)) asserts that the object that corresponds to the
term commander(AC#17) satisfies the property Is-pilot.

Operators allow the construction of complex wffs from simple wffs.
The operators normally used in FOPC are ~ (negation), A
(conjunction), v (disjunction), and — (implication).?

Quantifiers allow the construction of wffs that make assertions about
scts of objects. The quantifiers normally used in FOPC are V
(universal quantification) and 3 (existential guantification).

For instance, the expression

vx{Type-label(x,F-14) — (Role(x,FIGHTER) v Role(x,BOMBER))]

TPlcasc note that this is a very informal introduction 10 FOPC. In a rigorous
introduction, the lauguage and semaniics of a logic would be carcfully scparated.  For
our purposcs, however, this is unnccessary.

2Formally. only two operators (c.g., ~ and -->) arec nceded 1o define an FOPC
language.  The others can be defined in terms of the two initially sclected.  Similarly,
existential quantification can be defined in terms of unviersal quantification, and
vice versa.  So only one of these is needed to define the Tanguage.
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asserts that for all objects, if the object is an F-14 then the role of that
object is either FIGHTER or BOMBER.3

5.1.2 Deduction

A deduction system allows one to draw conclusions from an initial
database of wffs. In FOPC the deduction system is often characterized by
an axtom system, that specifies a set of axiom schemas and rules of
inference. A typical axiom system for FOPC is the following

Axiom Schemas
(p, q and r represent any wffs, t represents any term, x represents any
variable)

(Al) p— (q— p)
(A2) (p— (@@= 1)) = ((p~ q)= (p> 1)
(A3) (~q—> ~p)— (p— Q) M
(A4) VYx[(p—q) - (p — VxigD}*
(AS) Yx[p(x)] —= plt/x)
where p(t/x) means p with all unbound instances of x are
replaced with the term t.5

Rules of Inference (DB is an initial database of wffs)

Modus Ponens (MP) - If DB contains the wffs p and p—q, then conclude

Generalization (GEN) - If DB contains the wff p then conclude V xp.

In FOPC the only conclusion allowed are wffs that are either (a)
contained in the original data base, (b) instantiate one of the axiom
schemas, or (c¢) can be derived from repeated applications of the rules of
inference. For instance, from the data base

3As nceded, we also throw in nonlogical symbols (",")", "[", and "]") 10 help mark

the scope of ecach operator and quantificr.  These symbols are onlv markers, and have
no intended mcaning.

4Subject to the constraint that the wif p docs not contain the variable x outside
the scope of a quantifier.

5Subject 10 the constraint that all variables in t arc frec wherever x occurs frec
in .
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DB={ Vx|Type-label(x,F-14) — (Role(x,FIGHTER) v Role(x,BOMBER))|,
v x[Member-of(x, SQUADRON#2) — Type-label(x,F-14)],
Member-of(AC#6,SQUADRON#2) ).
The conclusion
Role(AC#6.FIGHTER) v Role(AC#6,BOMBER)

can be generated via the following sequence of conclusions:

How Deduced

C1 v x{Member-of(x, SQUADRON#2))
— Type-label(x,F-14}]
— Member-of (AC#6,SQUADRON#2)

— Type-label(AC#6,F-14) AS
Cc2 (Member-of (AC#6,SQUADRON#2)

— Type-label(AC#6,F-14)) DB2+C1+MP
C3 Type-label(AC#6 ,F-14) DB3+C2+MP

C4 Vx|Type-label(x,FF-14)
— (Role(x,FIGHTER) v Role(x,BOMBER))]
— (Type-label(AC#6,F-14)
— (Role(AC#6,FIGHTER) v Role(AC#6,BOMBER))) AS

C5 (Type-label(AC#6,F-14)
- (Role(AC#6,FIGHTER) v Role(AC#6,BOMBER))) DB1+C4+MP

C6 Role(AC#6,FIGHTER) v Role(AC#6,BOMBER))) C3+C5+MP

5.1.3 Soundness and Completeness

The usefulness of FOPC comes from the fact that it satisfies the
following two,properties.b

Soundness - No matter what objects or relations are denoted, if a
conclusion C is deduced from a database DB, then there does not exist
a possible state where the statements in DB are true and the
statement C 1s not true.

5This is a very informal description.
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The soundness property asserts that the FOPC deduction system will
only deduce truths from truths. Or put another way, if the premises of a
data base hold true, then the conclusions drawn from that data base are
inevitably true.

Completeness - If all the possible states that are consistent with a
database DB contain the wff C, then C can be deduced trom the
database DB in finite time.

The completeness property asserts that every valid conclusion of a
data base can be deduced using an FOPC deduction system.

Because FOPC is sound and complete, it provides a very general and
useful approach to inference. If a problem can be formulated as a set of
FOPC wffs, and a solution to that problem exists, then it 1s guaranteed that
an FOPC deduction system can find that sclution. This property extends to
planning problems as well. If the problem can be formulated as a set of
wifs, and we can express the question "Does the:e exist a plan that ..." as a
wff, then FOPC is guaranteed to find a plan if one exists. Also, the FOPC
deduction system will never return a plan which, by the formulation of the
problem, does not work. (Note however that if no solution exists then the
FOPC deduction system may not be able to make that deduction and

continue processing forever.)

5.2 The Situation Calculus and other Temporal Logics
5.2.1 The Situation Calculus

The situation calculus is an example of an FOPC approach to
formulating planning problems. It provides a convenient mechanism for
expressing situation-specific truths.  To illustrate, consider the wiff Fuel-
status(AC#6,1LOW) indicating that AC#6 1s low on fuel. In the situation
calculus a statement such as this would be expressed as

Holds(fuel-status(AC#6,LOW),S1)

indicating that in situation S1 fucl-status(AC#6,LOW) 15 true. Note that the
expression fuel-statustAC#6,LOW) is now an argument of a predicate.
Consequently, it is no longer a wff, but now has the status of a term.
Terms that are intended to reflect situation-specific truths are referred to
as fluents.
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Using the situation calculus it is now possible to describe situations
and how actions change situations. The consequences of the MOVE
operator could be characterized by the following statements:

al. vaxyzs [Holds(at(a,x,y,z),s) = Holds(ali(a,z),s)
a2. Vaxzs [(Holds(alt(a,z),s) & ~(x=z)) —» ~Holds(alt(a,x},3)}

a3. Vawxyzs [Holds(at(a,x,y,z),s) —
Holds(at(a,x,y,plus(z,w)),result(increase-alt(a,w),s)

a4. Vvawxyzs [Holds(at(a,x,y.z),s) —
Holds(at(a,x,plus(y,w),z),result(move-north(a,w),s)

al and a2 are domain axioms that describe necessary relationships
between fluents in a situation. a3 and a4 are effect axioms that describe
the consequences of various actions. In particular, al uses the term
result(increase-alt(a,w),s) to indirectly reference "the situation that results
from increasing altitude w units in situation s." By nesting "results” we can
reference the situation that results from a sequence of actions. For
example,

result(move-north(AC#6,20),
result(increase-alt(AC#6,100),
result(increase-alt(AC#6,50),S1)

denotes the situation that is the result of moving AC#6 north 20 units in
the situation that results from increasing altitude 100 units in the situation
that results from increasing altitude 50 units in situation S1. That is, it
denotes the situation that results from performing the following sequence
of actions in Sl:

increase-alt(AC#6,50) —-> increase-alt(AC#6,100) —> move-
north(AC#6,20).

Now that we see how to describe situation specific facts and action
scquonces, the ncxt 5icp is siraight forward,  In order te find a plan to
achieve a goal G one simply applies an FOPC theorem prover to a wif of the
form 3s{Holds(G,s)]. If a situation exicts that satisfies the goal then the
theorem will find that situation and will refer to it by stating the sequence
of actions required to reach that situation. For instance, if we begin with a
data basc that contains al through a4 above and the wif
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Holds(at(AC#6,10,10,10),S1)

and submit for proof the theorem 3Js[Holds(at(AC#6,10,30,20),s]. The
theorem prover will return a proof of a wif of the form:

Holds(at(AC#6,10,30,20),
result(increase-alt(AC#6,10),
result(move-north(AC#6,20),51)).

5.2.2 Temporal Logics

The situation calculus was one of the first logics proposed for use in
automated planning (Green, 1969; Kowolski, 1979). It was soon realized,
however, that its ability to represent temporally ordered facts was limited.
For example, in the situation calculus actions and their effects are discrete.
The ability to describe processes that evolve gradually over time ic l'mited.
Also it is difficult to represent situations where muitiple events and
processes occur simultaneously.

Because of the limits of the situation calculus, a variety of more
expressive temporal logics were developed. In these logics, rather than
bind the truth value of a fluent to situations, they are bound to time points
or time intervals. For instance, in Shoham's first-order temporal logic
(1988) the <ctatement

Holds(fuel-status(AC#6,1. OW), T1,T2)

indicates that at the interval <1 1,T2> AC#6 is low on fuel. Since fuel needs
to be replenished, it is possible to express this fact with the assertion

Valll2tlt4
[ Holds(fuel-status(ali),tl1,tl) A
~31213 t1<12 A 12<t3 A t3<td A Holds(refuel(a),t2,t3)]
— Holds(fuel-status(a,l2),t4.t4) A 12<I1,

which statecs that unless an aircraft is rctueled, its fucl level will not
increase. Note that terms such as T1, T2 etc. are abstract time points. To

relate them to clock time, one could write expressions such as

vaytl1t2 Holds(refuel(a),tl,t2) A Holds(cleock-reads(x),t1.t1)
— Holds(clock-reads(y),t2,t2) A y>plus(x,12).
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Which is intended to mean it takes at least 12 minutes to refuel.

As this example illustrates, temporal logics are considerably more
expressive than the situation calculus. However, the basic mechanisms of
deduction remain the same.  Consequently, the strategy for generating
plans is still one of applying a theorem prover to try to prove that a
situation, time point or interval exists that satisfies a set of desired
conditions.

5.3 Fundamental Problems with Formal Logics for Planning
Consider the following data base:

DB = { Voxys Holds(type(o,CAR),s) A Holds(at(o,x).s)
— Holds(at(o,y).result(drive(x,y,s)))
Holds(type(#337.CAR),S1)
Holds(at(#337,Home-loc),S1) ).

The first sentence asserts that driving a car from location x to
location y will result in that car being in location y. The second sentence
asserts that in situation S1, the object #337 is a CAR. Although apparently
simple, thesc sentences can be very problematic for a formal reasoning
system.

The first sentence is an overstatement. There are in fact an infinite
number of things that could occur that would prevent the car from
arriving at location y: a flat tire, engine trouble, an earth quake, etc.
Although none of these things are likely to happen. any one of them may
happen. If one does. then the formal reasoning system may find itself
with an inconsistent deduction. From DB, for instance, FOPC would deduce
the sentence

Holds(at(#337,Work-loc),result(drive(#337,Home-loc,Work-loc),S1))
even 1f it received direct data asserting
~Holds(ay(#337. Work-loc),result(drive(#337,Home-loc,Work-lo¢),51)).

To avoid this problem is to necessary to somehow qualify the first
sentence in DB by inserting extra conditions. For cxample,
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YOoXys
[ Holds(type(o,CAR),s) A Holds(at(o,x),s)
~ normal(at(o,y).drive(0,x,y),s)]
— Holds(at(o,y),result(drive(o,x,y,s))).

| ~Holds(flat-tire(0),s)
~ ~Holds(engine-trouble(o),s)
~ ~Holds(earth-quake,s)
A
— normai(at(o,y),drive(o,x,y),s)].

Unfortunately, qualified sentences of this form are useless. They
require that an infinite number of conditions be met before a deduction
can be made. However. if any conditions are dropped, then the possibility
of deducing inconsistent statements reappears. The qualification problem
is the problem of both efficiently and correctly reasoning about the
conditions under which an action has an intended effect.

The second sentence Type(#337,Car,S1) suffers a similar problem.
Consider the action of drive(#337,Home-loc,Work-loc,S1). Clearly, the act
driving a car from home to work has no impact on the fact that #337 is
still a car. However, in FOPC it is not possible to deduce that the act of
driving does no have this impact. Consequently, it is unable to deduce

Holds(type(#337,Car),result(drive(#337,Home-loc,Work-loc,S1)).

This illustrates a second problem, namely that FOPC can only deduce
that an action does not affect a fluent if it can explicitly prove that no
change has occurred. Consequently, to be complete the situation calculus
must include a series of frame axioms that specify the relevant non-
consequences of each type of action. Obviously, for reasonabie size
problems this is infeasible. The frame problem is the problem of finding
an cfficient and correct mechanism for reasoning about the non-
consequences of an action.?

5.4 Logics for Non-Monotonic Reasoning

Ameng the logicists in Al 1t 1s believed that if a logic could be
developed that solves the qualificatton and framc problem while retaining

“Scc Brown (1987) for some other formulations of the qualification and framec
problem.
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the desirable properties of FOPC (generality, soundness and completeness),
then a iruly general and effective formal logic for automated reasoning
will have been developed. Such a logic, in turn could be applied to
planning problems 1n the same way as FOPC can. Logics for non-monotonic
reasoning are designed to meet this objcctive.

FOPC and the situation calculus are monotonic logics. Once a
deduction is made the logic provides no facility for retracting that
deduction. Consequently, the set of deductions must increase

monotonically. A logic for non-monotonic reasoning, however, can retract
previous deduction in the face of new evidence. Consequently the set of
conciusions is non-monotonic -- sometimes increasing, sometimes
decreasing. The ability to retract conclusions allows the logic to "jump to
conclusions” thai are stronger than pure deduction allows without risking
later inconsistencies.

A variety of logics for non-monotonic reasoning have been developed
(for review see Reiter, 1987). It is beyond the scope of this report to
attempt to review even a subset of them. Instead, we provide a simple
example below and then note some of the problems with these logics.

5.41 An Example from Default Logic.

Default logic (Reiter, 1980) is an extended logic that adds to FOPC a
set of default rules of the form A:B|-dB. This rule states that if A can be
deduced, and as long as it is consistent to dcduce B then deduce B. Using
default logic we can modify DB to be

DB={ Yoxys |Hold(typc(o,CAR).s)

A Hold(at(o,x),s)

A~ Normal(at(o,y),drive(o,x,y),s)]

— [Hold(at(o.y).result(drive(o.x,y).s)))

A ~Persist(at(o,x),drive(0.x,y),s)]

Vxas Hold(x.s) A Persist(x,a.s) -» Hold(x,result(a,s)
Holds(type(#337,CAR),S1)
Holds(at(#337,Home-i0c),S1) 1},

and add the default rules

DIF = | ‘Normal(f,a,s)]-dNormal(f,a,s),
Holds(f,s):Persist(f,a,s)){-dpersisi(f.a.s) ).
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The first default rule asserts that as long as it is consistent to deduce
that an action i1s normal with respect to a fluent, then this deduction can be
made. Similar, the second rule asserts that if a fiuent holds in a situation,
and 1t 1s consistent to deduce that it will persist after the action is
performed, then that deduction can be made.

From DB and DF an automated reasoning system can now deduce:

DEDUCTION SOURCE
D1 Normal(drive(#337,lHome-loc,Work-loc),S1) DFi

D2  Holds(at(#337,Work-loc).
result(dnive(#337 Home-loc,Work-loc),S1)) DB, DF1

D3  Holds(type(#337.Car),
result(arive(#337,Home-loc,Work-10c.S1)) DB2, DF2

Now, if the reasoninc system later learns
~Holds(at(#337,Work-loc),result(drive(#337,Home-loc,Work-loc),S1)),

then the consistency criterion in DF1 is no longer satisfied. Consequently,
DF1 can not be used to deduce D2. In effect the deduction D2 has been
retracted. This illustrates how a logic for non-monotonic reasoning can be
used to jump to conclusions that can later retracted.

Sometimes the detault deductions lead to miltiple extensions. Each
extension includes a consistent set of default deductions, but the
extensions are inconsistent with e¢ach other. For instance, the database
{A,C} and set of defaults {A:B|-dB, C:~B|-d~B), has two cxtensions. The first
contains the default deduction B, while the second contains the default
deduction ~B.

5.4.2 Problems with Logics for Non-Monotonic Reasoning

Unfortunately, a satisfactory logic for non-monotonic reasoning has
yvet to be developed. In one form or another, all of these logics are subject
to a general problem called the anomalous extension problem. Anomalous
cxtensions  occur  whenever the default reasoning procedures gencrate
deductions that were not intended by the knowledge cengineer or fail to
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generate deductions that were intended. [For instance, the database and
default rules section 5.4.1 could not be used to deduce

Holds(at(#337,Work-loc).
resuli(drive(#337,Home-loc,Work-loc),result(do-nothing,S1))).

This is because there is an extension that contains from the assertion
~persist(at(#337,Home-loc),result(do-nothing,S1)), and

~Holds(at(#337,Work-loc),
result(drive(#337,Home-loc,Work-loc),result(do-nothing,S1)))

thereby preventing DF2 from being applied. Conscquently, the obvious
conclusion that do nc:hing does not change the location of an object can not
be deduced.

Although problems such as this can be individually repaired by
careful knowledge engineering a satisfactory general solution to these
problems has yet to emerge.

5.5 Possible Worlds Planning

Betore closing this chapter, we should mention a system that merges
the FOPC approach with the planning as heurisuc scarch paradigm. This is
Ginsburg's (1987) possible worlds planner. It works roughly as follows.
Initially, the planning domain is described in terms of a set of domain
axioms. Operators are detined 1n terms of a set of preconditions and an
add list. TFor any given state description, the description of the next state is
determined by using logical deduction to remove from the iniual state
description all propositions that are logically inconsistent with the
propositions on the add list.  Similarly, the distance of a state description
from the goal state is estimated by logically deducing the number of
propositions th:t must be removed from the state description in order to
be consistent with the goal state. Planning is then performed by using A*
to search through the space of state descriptions where h* is based on this
distance  cstimate.
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5.6 Relevance to Assaciate Technoloay
5.6.1 Plan Generation and Modification
The logicist objective i1s to build u general logic-based approach to

automated reasoning where inference, decision making, planning, crc. are
all decucvve activities that a- based on a set of first-principles.  If ecver

developed, an effecuve ftirst  uciples reasoning system would have many
advantages. The mosi mmporiant advantage 12 that many software and
«ncwledge  engineering  proble:as  disappear. It would no longer he

neeessary to caretully engineer a4 knowledege base for each domain.  Rather,
the knowledge engineer would only nced to specify a set of axtoms that
descitbe tne properties  of  the domuin. Plan  gencration  and  plan
modification problems could then be solved by executing a general logic-
bascd  reesoning  mechanism,

Urlortunately, 1 general  purpose  logic-based reasoning  system
remains an ideai. Cutrent systems do not perform well cnough 1o serve as
rcahistic planners.  The logic-based approach to planning bears watching,
Lul pear e apphicatzons ploaning we uniikely.

5.0.2 Real-time Planning

At first leok the tfirst principles approach appears incompatible with
real ume plo ming. Theorem provers are not gencrally noted for their
cthiciency  even  when  they are twallored to ecertain kinds of  deductions.
Purthermore. expressive  logics are inevitably  vadecidable,  Therefore, a
uscful first principals  planner cannot be guzrantecd to terminate o finite
time. much less "in tume”  However, tae picture is nat really as bleak as it
fooks.  Recent work (Ginsburg., 1990; Lenner, 1991: Horvitz, 1991) has
shown that v may be possible to have a thecorem prover generate
micrmediate results that are usually correct. Conscquently, it iy possible
to anterrupt  the automated reesonming process 1o request the “best answer
so tar” Once developed, such a capability would miake 1t possible tor a
tirst pimciples planner to support anyuvme plannmg. This work s very
oxploratory, bat bears watching,
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CHAPTER 6

PLANNING AND REACTING:
ARCHITECTURES FOR PLLANNING IN REAL-TIME

Associate systems arc designed to provide rcal time planning and
decision support.  Unfortunately, Al research in automated plannirg has
traditionally focused on the deliberation uaspect of planning.  Relatively
little atiention was paid to the 1ssue of real time (ie.. in time) reactivity,
In the last few years, however, this orientation has changed. There is an
emerging body of rescarch directly addressing the issue of real-time
planning.

Provided below is a brief overview of some of the principal
architectures that have been proposed for supporting the nced to plan
dehberation and the need to react in real time.  Please note that this is still
an immature rescarch area and swable paradigms or “schools of thought” in
this arca are still n transition.

6.1 Situated Activity/Universal Planning

Loosely characterized, this approach emphasizes the reactive clement
of iutelligent behavior to the point of suggesting that deliberate/"look
ahead” planning 1s a largeiy irrelevant aspect of intelligent behavior (Agre
and Chapman, 1987, Brooks, 1991; Kaelbling and Rosenschein 1990).  This
approach is based on the belief that a well-designed set of situation-action
rules can lead to i scquence of actions that appear to be part of a coherent
plan. cven though cach action was the result of apnlying an individual rule.
Since the agent's behavior is being directed by simple  situation-action
rules, rather than timc-consuming plan generation, rapid reactions  are
guaraniced.

To Musuate, consider Figure 6-1. The robot knows that the goal
focation is the comer marked with an X, s behavior s guided by two
rules.  Tarst, it an object is encountered, move around the object in the

general dirccuon of the goal Jocation.  Sceond. 1f the object is in sight, move
dircctly towand the object. A path that could result from these two rules s
shown m Figurc 6-1.  Although the path atscelf looks like it mav have been
the product of carcful planning, 1t in fact was stmple the result of the
applhication ol two simple rules,
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Figure 6-1: A Reasonable “Plan™ from a Reactive Robot
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When first presented. this viewpoint had a significant impact on the
automated planning community. It presented an approach that was in
sharp contrast to the traditional, deliberation-based viewpoint. However,
these contrasting views evolved toward a more common perspective --
that intelligent behavior requires a balanced combination of planning and
reacting. Many of the architectures presented below represent proposals
for achicving such a balance.

6.2 Layers of Planning

This approach recommends the use of multiple simultaneous
planning layers. Time-consuming plarning and deliberation occurs at the
“higher” levels, while lower level procedures are designed for rapid action
generation (Kaelbling, 1987). As each pianning layer completes its
processing, the actions it recommends are posted on a blackboard. As the
situation ecvolves, the system checks the blackboard continually for the
highest level actions that have been posted. If the situation evolves slowly
and is relatively stable, then there will usually be sufficient time for a
higher level planner to complete its deliberaticn and the agents behavior
will be guided by an explicit plan. On the other hand, if the sitnation is
dynamic, with unexpected events occurring often, then the actions posted
by the lower l'evel planners will be the only ones on the blackboard.
Consequently, in such situations the agents behavior will be largely
reactive.

6.3 Scheduling, Planning, Reacting, and Contrcl Activities

The previous paradigm strategy assumes that different levels of
planning can occur in parallel.  Even if feasible, this approach may
represent a  waste of compuiational resources.  An alternative approach
would be to dynamically schedule the extent to vrhich the system engages
deliberate vs. reactive planning (e.g., Hendler and Agrawala, 1990). In
rapidly changing situations. the scheduler would assign a higher priority
(more computational resources) to reactive planning, thereby reducing
rcaction times. Similarly, in slowly evolving situations, more computation
would bc applied to explicit planning.
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6.4 Decision Theoretic Control of Planning

In the last few years, decision theory has regained some popularity
in the Al community. The distinction between symbolic problem solving
and numeric reasoning has largely disappeared. With rcgard to  the
deliberation vs. action trade: f decision theory methods have been
proposed for explicitly controliing the scheduling of these activities. The
general idea here is that the reasoning system always maintain a list of
options with calculated expected utitity ‘EU). Initially, EU 1s calculated by
cmploying a decision model that considers just a few factors. As time
permits, the deccision model can be expanded to consider additional factors.
Onc of the interesting fecatures of this approach is that the decision
theoretic calculations can be used to calculate the cxpected utility of
considering additional factors (Henrion, 1991).!

6.5 Planning for Reaction

In AI, a plan has traditionally been viewed as a program for action
that can be loaded and executed by an execution system.  An alternaiive
view is to use the product of deliberate planning (which may not be an
explicit plan) as a guide for a reactive system. The arc a number of
variations on this idea. For instance, Marun and Allen (1990) take the
approach that a plan can serve as a set of instructions for a reactive
system, but that the instructions set may vary in its level of detail.
Consequently, the Iastruction set may bec very abstract, providing general
guidance to the reactive system. More <xtreme is the approach promoted
by Pavton (1990), suggesting that the product of deliberate planning not
be a plan, but a set socal rules that, if followed, will lead to behuvior that
scems to conform to a plan.2

6.6 Anytiine Problem Solving

Another approach to real time reactivity 1s to develop planning
systems that can be interrupted with a request to produce the “best
answer so far.”  Such a planner would be an instance of an anytime

I This is different than cxpected value of information (EVOD. In EVOI, the current
decision model is uscd to determine whether additional information (ec.g., sensor 1cst)
should be obtained.  In the case of cxpanding the decision model, the decision nceds
to be made as to whether the current decision model should be expanded.  This
decistion must be made outside the current dectsion model

b} . . - .
~Payton’s gradicnt ficld can be viewed as a sct of local rules.
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problem solver (Dean and Boddy, 1988). Siagle and Hamburger (1985)
achieve anytime behavior 1n  their expert system for arullery fire
allocation by quickly generating an initial solution, and then iteratively
modifying that solution as time permits. Boddy (1991) suggests that
anytime behavior can be achieved by maintaining two problem solvers. A
complex problem solver is used as long as time is available. When time 1s
short, & simplc and quick problem solver is invoked to complete any
partial plan generated by the more complex problem solver. Ginsburg
(1990) suggests that declarative nonmonotonic logics can be used to
support anytime problem solving, because such logics can be designed to
quickly jump to default conclusions that may be retracted later as a result
of additional deductions.?, Lehner (1991) and llorvitz (1991) have noted
that probabilistic reasoning can be used to convert many symbolic problem
solving algorithms into anytime problem solvers. This approach is
discussed in Scction 7.2.  finally, it should be noted that transtormational
planners (sce section 4.0) are generally adaptable to anytime problem
solving, since these planners operatc by initially invoking and then
debugging plans. A compiete, current plan i1s always available, albeit 1t
mayv be a faulty one.

6.7 Relevance to Pilots Associate
The relevance here 1s obvious. One of the key clements of associate
technolgy systems 1i1s that of providing real time planning support.

Consequently, any architecture that merges planning and reai time
behavior should be of interest to developers of associate systems.

Yhe anteresting feature in Ginsburyg's approach is that the  default  conclusions
may be oictracted as oa resalt of new deducnons made from g stable data base. This s
different than mosi nonmonotome  logics where new antormatien 1s required to
retract  a default conciusion.
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CHAPTER 7

AUTOMATED PLANNING AND
MATHEMATICAL OPTIMIZATION

Mathematical optimization (also called mathematical programming)
1s an area of Operations Research oriented toward the development of
automated procedures that find optimal solutions to a variety of problems.
The objective of a mathematical optimization procedure is to find optimal
solutions to well-defined and mathematical representable problems.
Typically, a mathematical programming procedure decompoues a problem
into two coniponents: an objective function and a constraiii space. The
objective function provides a measurc of merit by which proposed
solutions are rated. The constraint space dJdefines the set of acceptable
solutions. The goal is to find a solution that is optimal with respect to the
objective function, but is consistent with the constraint space.

IFor instance, in a linear programming problem the objective function
is defined as a linear expression while the constraint space is defined as a
set of lincar equalities and 1nequalities. For instance,

Minimize cl + .4¢2
Subject to cl - 2x1 =0
c2 -xI =0
xl > 10
cl 0
c2 > 0.

\vl N

In general, optimization procedurcs can be characterized in terms of
a powerigcnerality tradeoff. A problem solving technique i1s gencral to the
extent that it can be applied to a diversity of problems. [t is powerful to
thc cxtent that, when applied, it generates a4 good answer. Linear
programming techniques are very poweirful. Given that a problem can be
reprasented as a linear program, efficient procedures exist for finding

globally optimal solution  --  the best solution found in the constraint
space.  Linear programming 1s an example of a very powerful tcchnique
that has httle generzality. As expressions defining the objective function

and constraint space become less constrained (e.g., allow nonlinear
expressions, discrete variables, lexicographic relations, etc.) generality
increases, but power decreases. These morc genecral procedures are not
guarantced to find globally optimal solutions, and vegin look instead for
locally  optimal solutions.

~J
~J
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The introduction of Al technology can be viewed as an cxtension of
this power/generality tradeotf. Al problem scolvers tend toward the
extreme of the more general/less power end of this tradeoff. Most Al
planning system employ some form of satisficing strategy where the
system searches wuntil it finds any solution that satisfies a set of
constraints,  There 1s usuallv no explicit attempt to find a plan that scores
high on some measure of merit. On the other hand, Al planning systems
are very general. This i1s because much of the work in Al is oriented
toward developing flexible knowledge representation schemes where i1t 1s
possible to express any knowledge relevant to the problem solving
domain.!

Associate systems need to provide real time planning support.
Consequently, it is desirable to have systems that score high on boih power
and generality. Power is neceded simply vecause a system that does not
reliably generate good advice should be ignored (Lchner. 1989). Clearly,
optimization procedures are relevant here.  On the other hand, it 1s hard to
circumscribe a priori the types of constraints that may be rclevant to a
problem. A mission planning system that i1s designed to {ind an optimal
path may be faced with a problem involving the coordination of two or
more missions, diversionary legs on a route, etc. Such constraints may not
be ecasy to represent in the constraint language of a powerful optimization
system. Flexible knowledge representation schemes, on the other hand,
have little difficulty with such constraints. As depicted in Figure 7-1,
associate systems should have embedded planning techniques that place it
well above the current power/generality curve.

7.1 Breaking the Power/Generality Tradecffl

One way to break the power/generality ‘radeoff is to engineer
systems that in-corporate both heuristic and c¢ptimization-based problem
solving methods. One archiiecture for achieviig this is shown in Figure 7-
2. The basic idea is that the problem solving activitics of a heuristic
problem solver can be guided oy the outputs of an optimization procedure.

It could be argucd that knowledge-based problem solving docs not fall into this
category, since cffective knowledge engineering should lcad the problem solver to
gencrate good solutions.  However this argument doesn't hold for the rcason that
knowledge-based proccdures have no mechanism for dewermining if a soilution found
is "gocd." Conscquently, there is no mechanism that guarantces avoiding worst case
rcsuits.
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Figure 7-1: Power/Generality Tradeoff
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Initially a partial set of constraints is submitted to the Optimizer
which adempts to find an optimal solution for the partially constrained
problem. The principal output of the optimizer is an idealistic solution. It
is a solution that scores well on the measure of merit, but may not sausfy
all constraints.

The heuristic problem solver is designed to generate realistic
solutions that satisfy all relevant constraints. As noted earlier, by itself
there is no way to guarantee that the heuristic problem solver will
generate 4 solution that scores well on the measure of merit.  There is
always the possibility that a substantially better solution exists.

In our approach we provide the heuristic problem solver with an
additional input - the idealistic solution generated by the Optimizer. The
heuristic problem solver is then given the task of finding a reaiistic
solution that achieves some percentage (say 90%) of the measure of merit
value of the idealistic solution -- a high-valued, rcalistic solution. If such a
solution cannot be found, then the heuristic problem solver will need to
generate additional constraints that can be added to the partial constraint
list of the Optimizer. With these additional constraints, the optimizer is
rerun and a new idealistic solution is generated.

Although a variety of problem solving methods can be embedded in
the heuristic problem solver, the most natural approach would be one
based on the plan iransformation paradigm. The idealistic solution would
serve as the initial plan. It would undergo a seriecs of transformations until
a plan emerged that satisfied all constraints. If a satisfactory plan does not
emerge, then the heuristic problem solver would identify some steps in the
plan that appear to be cssential.  These steps definc a partially specified
plan that becomes the additional constraints to be submitted to the
optimizer.

7.2 Kelevance to Associate Technology

The applicavion ol optimization techniques to mission planning
problems has been an active area of invesugation for more than thirty
years., A number of mission planning systems already cxist that use these
tecchniques.  Unfortunately, these systems are subject to the difficulties we
noted above. Specifically, these systems only consider some of the
constraints that are relevant to mission planning. For instance, the
Lockheed planner in the Pilot's Associate is an optimization system that
optimizes by minimizing fuel expenditurc and site visibility. It does not
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consider path vuinerability (visibility is a surrogate), timing factors and
constraints, and coordination with other missions.

Combining optumization and Al-heuristic reasoning techniques in the
manner described above 1s one way to overcome the current limitation of
optimization-based mission planning systems,. This will be discussed
further 1in Chapter 10.

Generated Constraints

Partial L
Constraints Optimization
__p Proce |
rocedure Measure of
Merit Goal
Idealisuc
Solution
\/
Satisficing
P Procedure .
- Realistic and High
Additonal Constraints Valued Solution

Figure 7-2: Architecture for Merging Optimization
and Satisficing Procedures
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CHAPTER 8§

AUTOMATED PLANNING, UNCERTAINTY HANDLING
AND DECISION THEORY

In this chapter we examine the relationship between automated
planning in Al and the problem of uncertainty management. Many
problem domains for which associate technology systems have been
proposed are inherently probabilistic and the uncertainties associated with
the various state variables and action outcomes nced to be considered in
the planning process. Here we examine this relationship from two
perspectives.  First, we look at the problem of incorporating uncertainty
management into the planning process. Second, we examine the possible
application of uncertainty management techniques to the contrel of the
planning process.

In the A! community, there are two competing approaches to the
problem of handling uncertainty. The first approach suggests that
uncertainty 1s a matter of degree, and that uncertainty handling 1s a
problem of calculating belief values. Among the strongest proponents of
this approach are the Bayesians, who argue that a rational system for
behaving in uncertain situations must act as though it maintains a set of

belicfs values that conform to the probability calculus. The second
approach argues that uncertainty handling is a matter of making and
revising dassumptions. At all umes behavior conforms 10 a set of

assumptions about the current world state that need to be revised if
evidencc surfaces that 1s contrary to the current assumption sct.

8.1 Uncertainty Management with a Quantitative Belief Calculus

A variety of calculi have been proposed as a basis for calculating
belief values. In tiis section we will examine only one of these - the
Bayesian approach. Others may have their merits, but the main points to
be madc here can be donc so by examining just the one approach.

Buavesianism s a school of though that argues that a rational system
of behiet values must conform to the probability calculus, and that upon
learning new information (evidence), belief  values should be updated
using Baves rule.  This rule asserts that given two Hypotheses (H1 and H2)
and some cvidence item (L), then the refative beliet given B should be
catturaccd using the rule:
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B(HI1IE) B(EHI1)*B(H1)

B(H2IE) B(EIH2)*B(H2).

It is important to note that there i1s nothing in the Bayesian approach
that limits its use to situation where the true probabilities are known.
Indeed many proponents of the Bayesian approach would argue that the
notion of a "true" probability is itself spurious. The statement "The
probability that the coin will land Heads is .5" is a statement expressing
our degree of belief that the coin will land Heads or Tails. The coin itself
will cither land Heads or Tails.

When apphied to planning problems, belief values are merged with
outcome utilities so that choices that maximize expected utility can be
made. To illustrate how this works, consider the simple route planning
problem depicted in Figure 8-1. A robot, initiallv at x,y coordinate (6,11)
must find a path to the refueling cell at (5,5). At the refueling cell is one
hundred units of energy. It cost one unit of energy to move into a blank
cell, 20C units of energy to move into a dark cell. The cost of moving into a
cell marked with a ? is either 1 or 200 energy units. The robots objective
1S to maximize its energy store. Finally, when a robot is next to a ? cell, it
can use a sensor to test whether or not the ? cell is a blank ceil. When the
sensor is working reliably its reports are completely accurate. When the
sensor is not working, it reports cither "Clear” or "Dark" about equally
often. independent of whether the ? cell is truly Clear or Dark. The cost of
a sensor test is 20 energy units.

Now we include some belief values. Of the 100 non ? cells, 40 are
dark, so we initially assert B(ClearlCell is type ?7) = .6. The sensor, because
of prior testing, operates reliably about 80% of the time.

We now examine the plan proposed in Figure 8-2. The lower portion
lays out the possible cvents sequences that may occur if this plans is
cxecuted.  Each complete path on this tree is called a chronicle (Hanks,
1990). The first chronicle asserts that the robot will go several steps to
coordinate (6,6), then to coordinate (6,5) which will be a blank square, and
then to coordinate (5,5). Chronicle two i1s the same except that (6.5) is
dark.  The expected utility or this plan is calculated by multiplying the
probability of each path times its cost. For Plan I, this gives us

EU(PLAN 1) = .0%(100-7) + .4*(100-200) = 13.4.
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Move to 5,5 —» _100

li\'love to 6,6

Move to 6,5 1
_— 1.0 \
-3 -1 )
A 200

Figure 8-2: First Chronicle for Robot Planninz Prablem
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B("Clear”) =
B("Clear"IClear & Rcliable)*B(CleariReliable)*B(Reliable)

+ B("Clear"IDark & Reliable)*B(DarkiReliable)*B(Reliable)

+ B("Clear"IClear & ~Reliable)*B(Clearl~Reliable)*B(~Reliable)

+ B("Clear"IDark & ~Reliable)*B(Darki~Reliable)*B(~Reliable)
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Figure 8-3 lays out this plan,
The probability that a

1.0%.6%8 + 0.0*4*8 + 5*%.6*%2 + 5*4*2

An alternative plan is to go to (6,5), get a sensor reading on (€,6) and
then go around if the sensor reports "Dark"”.
along with the probability that each step will occur.
sensor reading will report back "Clear” is calculated as follows:

| 58.
l Move to |—> +100
y 5.5
-1
‘Clear” |— Move to
I 58 1065 |\,
-0 -1 707200
I Move to A 0= Test 6.5\
T 4>‘ Move t
_D e 4 " OVG O
-0 3
Move to », Move 1o | Move to |
| " 72 52 [ 55 +100
I -4 -2 -3
Firure 5~3: dSecond Chronicle for Roboi Pianuning Problem
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The probability that (6,5) is in fact Clear, given that the sensor
reported "Clear” is calculate using Bayes rule:

B(Clearl"Clear™) =
B("Clear"IClear)*B(Clear)/B("Clear") =

[B("Clear"IClear & Reliable)*B(ReliablelClear)
+ B("Clear"IClear & ~ Reliable)*B(~ReliablelClear)] * B(Clear)
B("Clear")

[1.0%.8 + 0.0*.2]*.6/.58 = .83.

This gives us B(Clear"Clear”) = .83. Plan 2 has three chronicles with an
expected value of 84.3. This, in turn. indicates that the expected value of
incorporating the sensor test into the plan is 40.2 - 13.4 = 26.8.

This plan can be further elaborated by adding in a second sensor test
if the first test indicates "Clear”. As shown in Figure 8-4 this plan has an
expected value of 38.5. A second sensor test is more costly than the
expected gain.

As this example indicates, probability calculations can be quite useful

in determining what steps to add to a plan, and for calculating the
expected benefits and costs of each step.
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8.2 App.cations of Decision Theory to Automated Planning

In the last few ycars, there has cmerged a resurgence of interest in
the application of decision theory to automated problem solving. Below we
briefly note some directions this work is taking.

Decision Theorv-based Decisions - The most direct application 1s to
use cxpected utility calculations to select actions. This was iilustrated in
section 8.1. Unfortunately, this approach may be difficult to estimate since
it may require an exorbitant number of probability assessments. One
approach to overcoming this problem is to implement a qualitative
inference system that conforms to the probability calculus (Wellman,
1990).  Alternatively, one can develop procedures for constructing small,
problem-specific decision models (e.g., Laskey, 1990; Laskey and Lehner,
1991:. Peot and Breese, 1991). Reasoning within these models involves
explicit probability and utility calculations.  However, reasoming about
these models may be heuristic,

Probabilistic Domain Models - Probabilistic models have been
proposed as an alternative to the simplistic action models cmbedded in
STRIPS-like planners. These probabilistic models can then be used to
reason abour the probability of alternative futures (e.g., Dean and
Kanazawa, 1989:). Much of the research in this area is focused on cfficient
probabilistic projection, where computation is focused only on relevant and
probable futures (e.g., Hanks, 1990)

Rationalization of Heuristic Procedures - Automated planning
research is traditionally based on symbolic rcasoning techniques. This has
made it difficult to reclate this research to decision theoretic notions of
planning and action sclections. Recently, several researchers have
attempted to provide a general mapping between concepts relevant to the
symbolic approach and decision theory. Much of this work focuses on the
relationship between symbolic goals and utilities (Haddawy and Hanks,
1990: Wellman and Doyle; 1991).

Decision Theoretic Control - Here the objective 1s to use decision
theory to select which planning steps to execute next. The VOI example
provided in scction 8.1 is an example of this form of control. In particular,
it is an cxample of reasoning within a decision model to make decisions as
to the next pest step to execute.! The work of Tom Dean is a good example

TAs long as the system is rcasoning from within a dcecision model, tlicn decision
theory docs not formally distinguish actions and control  decisions.
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of this line of research (Dean, 1990). An alternative approach is to use
probabilistic knowledge about an planning system to make control
decisions about how planning should proceed (Lehner, 1991). In this
approach decision theoretic reasoning 1s used at the metaplanning level
and can be applied to controlling problem solving procedurcs that are not
themselves decision theoretic.

8.3 Uncertainty Management using KReason Maintenance

An altcrnative approach to planning under uncertainty is to make an
explicit set of assumptions which can be later retracted if found to be
invalid. The problem of keeping track of assumptions and the deductions
that depend on each assumpiions is called reason maintenance or truth
maintenarce. Systems for tracking assumption fall into two categorics.
Reason Maintenance Systems (RMS) maintain o single, consistent set of
assumptions and deductions (Doyle, 1979). In an RMS, when a new
conclusion is made that contradicts a previous deduction, the RMS will
identify the assumptions upon which the previous deduction depends;
select one or more assuwmptions to retract; and rcmove all other deductions
that depend on those assumptions. In this was, the RMS always maintains
a single, consistent view of the world. Assumption-based Truth
Maintenance Systems (ATMS) simultaneously keep track of all
assumptions and deductions (DeKleer, 1986).2 For each deduction, the
ATMS will maintain a label that specifies them minimal assumption sets
under which the deduction can be derived. Furthermore, the ATMS tracks
all inconsistencies in the assumptions. As a result, an ATMS can quickly
determine (1) all deductions that are justified by an arbitrary set of
assumptions, and (2) all assumption sets which justify a deduction.

Although reason maintenance is a major research area in Al, it has
had relatively little impact on the planning research community. This is
somewhat surprising since much of the research in the area was initially
motivated by a desire to solve the qualification and frame problem in
automated pianning. The most direct application of reason maintenance to
automated planning is found in Morris (1987). In addition, temporal data

We should notc here that this is an inhcrently limited capability.  Systems for
rcason maintenance of propositional systems. They simply record the scquence of
deductions madec by a problem solver, but have no rcal problem solving capability of
their own. For instance, if thc problem solver deduced and submitted to the rcason
maintenance system F(x)-->P(x), and F(A), thc rcason maintenancc system could not
deduce P(A). All it could do is record the fact that problem solver used the strings
'F(x)-->P(x)" and "F(A)" 10 yustify P(A).
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basc management systems (e.g., Dcan and McDermortt, 1988) usually
cmbed some form of rcason maintenance.

8.4 Merging Probabilistic and Assumption-based Reasoning

For many the appropnate solution to uncertainty management is 1o
merge the quantitative and qualitative approaches. Severai ways to do
this have been proposed. So far none have proven very satisfactory. One
popular approach (see Laskey and Lchner, 1989; 1990) is to use an ATMS
to keep track of assumptions. and then to attach probabilitics to the
assumptions.  The belief in any set of assumptions is calculated by
multiplying out the probabilities of cach assumption. The belief in any
proposition is calculated by summing up the beliefs ot the assumption  sets
that imply that proposition. Unfortunately, as shown in lLaskey and
Lehner (1989) this approach is formally cquivalent to the Shaterian
caiculus for belief management and is therefore subject to all of the
problems associated with the Shaferian calculus (Pearl, 1990).

8.5 Relevance to Associate Technology.
8.5.1 Plan Generation

As discussed above, domains such as mission planning are generally
probabilistic.  Automated planning systems that address such domains
should have an explicit mechanism tor addressing uncertainty handling
problems. In general, there scem to be three basic approaches to dealing
with uncertainty.

Ignore Uncertainty - Simply ignore uncertainties, gencrate plans
assuming a certain  situwation description, and replan later as
necessary.

Make Assumptions Explicit - This is similar to the previous

approach cxcept that the assumptions that were used to generate a
certain situation description are made explicit, recorded ans
tracked. In this way the conditions under which replanning
required can be identified early.

Make Uncertainties Explicit - The probabilistic reasoning approach
requires that the levels of uncertainty be made expheit Plan
aeneration involves explicit calculation of the probabilities and
uncertainties associated cach action.
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Lach approach huas ity advantages.  The tirst approach s clearly the
most computavonaltly tractable. It the domain s such that there s little
cost associate with replanning, then 1t scems preterable. The sccond
approach adds somec computational burden, but it also makes it casier to
focus replanning acuvities.  The third approach can add a significant
computadonal  burden. However, 1t is the preferred approach i the
domain is such that there are severe negative costs  associtated  with
"mistakes” 1n the plan.

8.5.2 Replanning and Real-time Planning

Incorporating uncertainty management 1nto  automated planning is
still @ rclauve new arca within the automated planning community. It is
not clear at this point the extent to which 1t will cventually promoic or
prevent real time planning and replanning. It plan generation includes
probabilistic reasoning, then this will obviously slow things down. On the
other hand, as discussed above decision theoret': procedures can be used
to control the pl.inning process. thereby focusing the planming process
important planning steps. This s clearly an area that deserves further
investigation.
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CHAPTER 9

HARDWARE ISSUES IN AUTOMATED PLANNING

This chapter summarizes the results of an investigation into the
applicability of wvarious processor architectures to planning and,
specifically, mission planning. This investigation of hardware technologies
was initiated in August, 1990. The activities under this tasking included
surveys of the academic and trade literature for application ot high
performance hardware to the planning problem or closely related
applications. The examination of hardware directions also sought
promising possibilities not yet being pursued for planning. Focus was on
high performance engines and techmiques which have been applied only to
narrow applications, but which may prove applicabie to planning. Specific
points of departure for the search included machine intelligence, logic
programming, parallel processing, and gcneral literature on computers and
component devices.

The perspective guiding the examination of hardware technology is
the hierarchical naturc of technologies upon which computer based
problem solving is founded. Figure 9-1 shows such a hierarchy for the
planning problem. Each level is an abstraction that defines the nature of a
machine, such that lower levels need not be considered. For example, the
abstractions in a register transfer language allow design at that level
without concern for the internal gate or transistor structures internal to
the registers, multiplexes, etc. of the components, at least to the first order.
Likewise, a user of assembly language need know only the computer's
programming model, not its microcode or internal bus structure.  Higher
level languages extend this hierarchy farther toward the problem domauin.
For planning, these may be procedural or declarative. The higher level
languages are general in purpose, being used to express in cxecutable form
techniques applied speciiically to the planning problem.

9.1 Planning Technology Hierarchy Perspective

The benefit of such a hierarchy is that cach level of abstraction is a
managcabic stcp towards usecful problem solving.,  Progress is made by
successively adding abstractions toward the top which reduce the gap
between means and ends.  The cost 1s that, at cach level of abstraction, all
possible .perations at the next higher level must be supported, rather than
only & specialized task at hand.  This carrics a cost in cfficiency which may
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be as high as an order of magnitude per level. Research and development
within cach level aims at imprcving performance without changing the
boundary specifications, reducing the <cost of the level and the
computational power of all levels above 1it.  Other developments have
allowed levels to be skipped or combined, thus cutting out inefficiencies
related to abstraction boundaries. The Lisp machine cuts out conventional
assembly language; RISC processors in effect cut out a level by combining
assembly and microcode, and shifting the interface to the higher level
language compiler downward.

The Planning Problem

Techniques, decomposition

Planning
Engin

Algorithms  Declarative lang.

Proc. Languages

Prolog or

l\lachine Language | Fxpert
SIMD Systems

D Engine
or bit slice = Microcode

Registers and Busses

_ . VLSI
Logic Devices | (ools

Electronics and Materials

Figure 9-1  Computer Technology Hierarchy for Planning

If one can skip over one or more levels of abstraction in the diagram,
considcrable efficiency in spced, weight, power use, and size may be
gained. A hardware device that directly implements a planning algorithm
using dedicated registers and busses avoids all of the levels associated
with the von Neumann computer. One may expect perhaps three orders of
magnitude performance benefit, given comparable hardware technology at
the register and gate level.  Only one device of this sort was found, the
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Lockheed Zap processor. Others may weli exist but as proprietary devices
may not have been published. It 15 also possible to gain considerable
benetit by using a custom processor of the bit slice type. in effect
implementing :he algorithm with custom microcode.

Less planning specific applications of hardware technology include
specialized cngines that cxecute particular languages in which planning
problems may be expressed. These include Lisp processors and processors
dedicated to executing declarative larnguages. A number of Prolog and
expert systems engines were noted which generaily gave about an order of
magnitude speedup over more conventional processors. Some specialized
processors were dedicated to the support of new higher level abstractions,
such as fuzzy logic.

One approach to performance not shown on the hierarchy figure is
parallelism.  Parallelism can be inserted at a number of different levels.
SIMD (Single Instruction stream, Multiple Data stream) parallelism takes
place at the microcode and possibly the register/bus levels, in that the
single controller must account for interactions among the different
processors. MIMD (Multiple Instruction stream, Multiple Data stream)
parallelism occurs above the machine language level. The problem solver
may explicitly invoke parallelism by designating it in his functional
decomposition, or it may be invoked at or unseen below the language level
with processors managed as resources. Parallelism allows the use of
machines with much greater raw computational horsepower, but adds a
level to the hierarchy. The costs of that level are both speedup limitations
like bottlenccks that limit cfficiency and changes in the computational
model  (e.g. memory access restrictions) that restrict the range of
cxpression in the next higher level.

A bigger problem with parallelism than loss of cfficiency is that for
many forms of paralleclism the intermediatc abstractions to bridge the gap
to the planning problem domain have not vet been found. Techniques for
appiving MIMD to planning are few, and for SIMD even fewer. The classes
of SIMD that restrict communications to adjacent nodes, or MIMD machines
having very tightly synchronized communications (c.g. transputer or Warp
arrays) arc difficult to apply to amorphous problems like planning. To
datc they have been applied to array organized problems. Optical
machines are cvea more of a challenge.  Yet these technologics bhave
cnormous taw potential, 1f the abstractions necessary to apply them can be
found.
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9.2 Survey Results

The survey was conducted during 1990 and 1991. Various journals
and conference proceedings 1n relevant fields were surveyed. The findings
below fall into categories illustrated in Figure 9-2. Note that some
incorporate more than one element of interest, parallelism together with a
specialized processor. The projects and products cited should be regarded
as represeniative rather than exhaustive.

General Purpose Uniprocessors

Special Purpose Processors

P

Parallel Expert Fuzzy Logic  Plannin
Processors Prolog o e Y 08 2
i ystems Processor
/\ Engines Engines Pro/ces\s:rs
SIMD MIMD Uniproc. Digital  Analog

KCM PLUM Pesa-l KCM ngai FXLoan YFC-1 ZAP
FC110

Figure 9-2 Representative Examples of Hardware Applicable to Planning
9.2.1 Zap Processor:

This is the only instance of specifically planning hardware known. It
was developed by Lockheed and is proprietary, with most details not being
releasable.  The information given here was made available by Marty
Broadwell of Lockheed, Georgia. The ZAP is a single 6"x 6" VME board
special processor for the dynamic programming algorithm. The planning
spacc represented 1S 128x128x8x8x8, with the dimensions used to
represent latitude, longitude, altitude, heading, and bank rcspectively. A
raster-like optimization process builds a cost matrix from a sced point to
all other points in the spacc. Templates to rcpresent cost components, such
as a cookic-cutter pattern for exposure to a missile site, can be added or
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deleted very quickly. The processor is built with off-the-shelf
components. Programmable Gate Arrays are used for the processor, that
scarches a large amount of memory at a time. The current version of the
ZAP searches at 2 to 3 times the speed of an R3000 (25Mhz RISC), a new
model will be 30 times faster and have added flexibility. This will give a n
execution time of less than a second for a full scale problem, or faster for
smaller scaled problems.[1]

9.2.2 Parallel Prolog:

Ramkumar and Kale give benchmarks for a variety of MIMD parallel
Prolog implementations on Alliant, iPSC/2, Multimax, and Symmetry
machines.  Speedups were near linear for the tests with up to 20
processors, though all showed singie processor performance nearly always
worse than either single processor implementation used for comparison
(SB Prolog on Multimax and Quintus on a Sun 3/60). The uni-processor

implementations did not use “cut". The benchmarks here appear
promising, but are for very simple problems (Fib26, Qn9, Fib+, and Occur)
and with relatively few processors [2]. Saletore and Kale give some

additional benchmarks [3]. Shyam Mudambi shows the Aurora OR-
Parallelism based parallel system achieving 10 times the performance of a
Sun 3/50 on a 40 processor BBN GP-1000. Some benchmark problems
bottlenecked quickly, though [4]. Additional Aurora benchmarks are given
by Peter Szeredi [5]. Ashok Singhal and Yale Pratt describe PLUM (Parallel
Unification Machine), a system that performs Prolog Bookkeeping and
Unification in parallel to give a speedup of 1.7 beyond that available
though cother parallelism [6][7].

Recently, a Transputer based commercial parallel PROLOG product
from Paralogic has been announced. Both AND and OR type parallelism is

used. Processor boards bearing 5 Transputer processors are available for
the IBM PC-AT [8].

9.2.3 Specialized Proiog Engines

A number of examples of specialized back-end Prolog or production
rule crunching machines were found. For example, H. Benker et. al. report
on a fairly complex board level processor specialized for Prolog. It runs
about 5 to 10 times faster than Quintus Prolog on the SUN 3/280, the
Quintus Prolog seeming to be a commonly cited basis of comparison [9]
(The Sun 37280 is 68020, 25Mhz with 20Mhz FPU.) The KCM type
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approach, upgraded for more rccent improvements in component
technology, would likely not compare as favorably to RISC type
processors.)  Konagaya, et. al. report on a processor that runs 1.5 times
faster than Quintus Prolog on a Sun 4/280 despite having a 200ns clock vs
66ns for the Sun. Interpreted performance (with "Dynamic Clause
Compilation") runs 6 to 8 times faster. This is part of the "Fifth Generation®
project.[10]

A VLSI approach to a specialized Artificial Intelligence oriented
processor described by Maeda et. al. takes a 5 stage pipelining approach to
achieve as much fine grain parallelism within the processor as possible.
The IP1704 processor achieves a performance of 1.5M Prolog LIPS
executing the Append benchmark, using 11 clock cycles per inference. The
processor also can execute Lisp [32].

Such processors follow Von Neumann or Harvard architecture
principles, but incorporate specialized elements or greater fine-grained
parallelism to give an advantage. About an order of magnitude
improvement over general purpose processors seems to be the limit of
such dedicated special purpose processors for most problems. That is the
range of performancc found in literature surveyed to date. This advantage
would seem to be shrinking for a number of reasons, including differences
in time to market, the necessary customization of hardware for the
specialized engine requiring a greater lead time, and the lesser resources
available for development of a more specialized engine. The trend seen for
specialized Lisp processors is likely also applicable to processors
specialized for Proiog and other languages. The mass market price
benefits, increasing reiative capability, and software advances for general
purpose micros has swamped most of the advantages of specialized Lisp
Machines in the marketplace.

9.2.4 Production Rule Systems:

A number of papers about processors for production rules (as in
expert systems) rather than Prolog were found. PESA I, a "Parallel
Architecture for Production Systems" was an interesting example. Up to
32 MIMD processors are arrayed in layers which process rules in a
somewhat pipeline manner. The last stage of operation is "Conflict set
resolution”. Speedup drops greatly beyond 8 processors, however.
Performance of 8000 rule firings per second was achieved. using 1.6 MIP
processor elements. A limit of about an order of magnitude speedup over
sequential seems tc apply to both Prolog and rule based systems [11]. The
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processing of production rules in this system follows the "Rete" algorithm
in which the compiler maps rules to an acyclic data flow graph, then the
rules are interpreted. This was also true for the system developed by
Anurag Acharya and Milind Tambe [12]. The rule system used for both
was OPS5. Benefit is gained by storing the partial results of matches from
previous cycles to use in later ones (since only a small part of working
memory changes on each cycle) and by sharing the results of computations
shared by rules being simultaneously processed. These principles seem
applicable to sequential as well as parallel processing.

9.2.5 Fuzzy Logic:

A starting point for surveying hardware for fuzzy logic is Gupta and
Yamakawa [13]. It contains papers describing elements that contribute to
fuzzy computing engines. These include inference engine elements,
memory, and controller [14]). A fuzzy flipflop is described [15]. However,
all of this is very far from practicality for the Pilot's Associate program. A
number of software based fuzzy logic systems exist, which were not
surveyed given the hardware focus of this effort. An example is the VAX
based ERNEST [16], which includes "arbitrary procedures to allow
probabilistic and fuzzy reasoning”. An example of a specialized fuzzy logic
processor applied to an application is FXLoan, a system that evaluates loan
applications.  Although this system is simulated (as of the publication
date), the hnardware design shows the features necessary for fuzzy logic
processing [34].

Togai Infralogic, Inc. nroduces a family of Digital Fuzzy Processor
boards for VME and PC/AT busses as well as a stand-aione modules. A
special fuzzy processor chip i1s advertised as processing over 370K two-
premise fuzzy production rules per second (or over 1M Boolean rules). The
VME product uses four such processors. Considerable software support for
development is available. Details of the processor's internal structure were
not available.[29]

9.2.6 Other Specialized Hardware:

Perhaps the moest interesting specialized processor is the IXM, a
multi-processor engine for implementing a semantic net [17]. A prototype
handles 64K links using associative memories. It has 32 processors and
128K words of 40 bits. The language IXL is a Prolog superset that includes
predicates for semantic network processing. The architecture is cssentially
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SIMD with a pyramid of connections. This was one of the most innovative
pieces of work found.

9.2.7 Application of SIMD to Planning:

Delivery of the greatest amount of raw computation for a given price
seems to be in SIMD type architectures. However, planning applications
have been hard to find. One example is from the robotics domain: RAMBO.
The Connection Machine is used to simultaneously determine, for several
trajectories from one point in a target body relative space to another,
several possible paths associated with different times to make the
transition. For each discrete time step along each path derivatives are
calculated in paralle!l. The path having the shortest time yet not exceeding
limits on the dernivatives, is chosen [30].

$.3 Other Hardware having Potential Application to Planning

The machines discussed in the preceding section were designed to be
used for machine intelligence types of problems, of which planning is an
example. In addition, machines exist which do not currently fit in the
planning technology hierarchy, but which may prove useful for planning if
appropriate mappings from the planning domain can be developed. In
some cases, the machines discussed are already being applied to closely
related problems. This is especially true for machines.applied to vision.

9.3.1 Vision Architectures:

One thread of potential application that seems worth pursuing is the
possibility of mapping between the planning problem and the machine
vision problem. If such a mapping can be found, the hardware (and
software) techniques currently being applied to machine vision and image
understanding may be applied to planning also. Dechter, Meiri and Pearl
describe the application of graphs to constraint satisfaction, which is seen
as a key part of the planning process [18]. It may prove possible to show
formally that vision and planning are related using graph theory. Such
proof would establish the applicability of vision oriented architectures to
both problems.

The computer vision community has made considerable progress
toward high performance hardware for vision computation. and towards
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benchmarking. Performance for wvarious vision algorithms on several
sequential and parallel machines has been reported [19]. Vision
algorithms have been mapped to a variety of general purpose MIMD and
SIMD computers and to special purpose processors. Commercial products
such as KBVision (which incorporates much of the developments from the
University of Massachusetts) are emerging [20]. The extent to which the
planning problem can benefit from this extensive work should be a high
priority for investigation.

A number of papers have described mappings of graph and image
related processing onto specialized processors built for vision algorithms,
but which are in fact SIMD machines with more general capabilities.
Heaton, Blevins, and Davis describe a 128 processor SIMD chip having a 22
bit control bus and capable of 20Mhz operation. This 1.1 Million device
chip uses 1 micron CMOS and executes an instruction every clock cycle
[21}. This and similar SIMD's meant specifically for image work, such as
the much earlier 72 processor GAPP chip (Martin Marietta and NCR) tend
to have memory that is on-chip and thus smaller and faster than the more
"general purpose” SIMD’s such as the Connection Machine (22]. The paucity
of memory per processor gives such machines a different characteristic;
they simply dc not hold enough data to support the usual message
oriented graph abstractions. They are usually limited to a mesh
interconnect structure. However, they might prove capable of supporting
other network or planning domain abstractions, in which (ase their
relative.; high computational advantage can be brought to bear.

Widespread application of image processing machinery is resulting in
reduced prices for commercial specialized hardware systems, some of
which might be useful for tue planning problem. For example, VZITec Inc.
has announced a $20K single board imaging system that performs at 175
MOPS and supports C, Motif, and X-Windows. [23].

9.3.2 Related Domain Hardware:

High performance lardware has been applied to a number of other
problem areas which may have a relation to planning. For example, speech
recognition and natural language processing involve massive search, as 1s
also true of planning. M. Motomura et. al. of NEC describe a chip used for
word search that is capable of finding word entiies that are approximate
matches.  This content addressable approach allows 2048 words per chip,
and handles an input character per clock [24]. Similar kinds of search
mechanics may bc useful for planning. A. Stolzle, ct. al., describe a
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processor that implements the Viterbi algorithm for finding the most
probable state sequence for the utterance [25]. A comparable way of
considering traversing a series of states in pianning might allow the use of
this or similar high performance hardware.

The fruits of the VHSIC program may prove applicable as well.
These and other high performance processors are targeted to signal
processing applications. A news report of the joint Motorola-TRW CPUAX
central processor unit, a VHSIC phase 2 product, credits the 1.5 x 1.6 inch
chip with 4 M transistors, and 200 MFLGP performance. It uses self-repair
redundancy, requiring 61 of 142 macrocells for full capacity. This
development points to the probability of increased capability tfor the other
hardware approaches already mentioned [26].

Parallel database and query systems research has produced
haraware for database machines which may well be applicable to planning.
Resources did not permit an investigation of this field [33].

9.3.3 Necural Networks

Artificial Neural Systems have to date been applied more toward
deductive processes such as diagnosis and recognition than constructive
activities such as planning. However, JPL has reported prototype
application to both path planning and to the allocation of resources [28].
There are numercus implementations of neural networks involving analog
or digital hardware or simulation on more general purpose machines.
These machines were not surveyed.

9.3.4 Other High performance Hardware

This last category includes recently emerging hardware with
relatively limited scope of applicability but cnormous computational
power. The problem is the develepment of abstractions, programming
techniques and problem mappings, that would allow the potential of these
machines to be applied to planning. The following description is intended
to be illustrative of this category.

The "Datawave" chip developed by Intermetall GmbH/ITT 1s
essentially a MIMD processor intended to be arranged as a Mesh with
FIFO's connecting adjacent processors. Each chip includes a register file,
64x48 bits of program RAM, and ALU uand Multiplier arranged with four
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busses in the chip to allow simnltaneous use of rescurces. The clock is 125
Mhz. The chip is reported as expected to seil for $30 to $40 in a 124 pin
plastic package. A 4x4 array is expected to achieve 4 billion operations
per second and throughput of 750 Mbytes per second applied to video
problems.  This illustrates the cnormous raw computational power of
current technology now being applied to highly structured problems. (The
iWarp is another product, which had its origins in the DARPA sponsored
Warp project at CMU, that also falls into this general category between
SIMD and MIMD, as does the Transputer.) Optical processors are perhaps
even more powerful in raw computational power, but even more difficult
to apply.

Mapping of planning algorithms directly to hardware, as with the Zap
processor, now entails custom design requiring considerable time and
resources. This 1s avoided normally by using programming abstractions to
adapt more general purpose. but less efficient, computational machinery to
the task. A possible future alternative is compilation of the algorithms to

hardware. in the form of VLSI. Some pieces of the infrastructure to
support this concept, silicon foundries, design-to-test techniques, design
frames and system Kkits already exist. The key remaining link is

translation of a problem oriented software description into hardware
definition. Some progress is being made on this front. Barada and El-
Amawy have developed a methodology for mapping a restricted class of
algorithms to VLSI. These are forms having a series of nested iteration
loops around a series of if/felse if rules [31]. This form may be appropriate
for declarative languages such as the constraint languages of interest for
planning, or a subset of them. Aside from custom VLSI, a range of semi-
custom fabrication techniques exisi which may also serve as vehicles to
migrate algorithms to hardware, if the compilation techniques can be
developed [335].

9.4 Conclusions and Recommendations

Very little hardware work specifically focused on planning was in
evidence. It is quite possible that others exist that are proprietary or
classified. A number of specialized machines to support declarative
languages such as Prolog were found, but these tended to focus on early
declarative language forms and benchmark well known simple programs
like n Queens. No hardwarc aimed at more general constraint languages,
such as Prolog 3, was found. Processors for neural nets and fuzzy logic are
cmerging which may have application to the planning provicms of interest
to Pilot's Associate. A mapping from the constraint language to the
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hardwarc used for fuzzy logic might be possible. The JPL i1eport shows at
lcast some capability for neural nets in planniag. The one processor
dedicated to planning, the Zap processor, uses a dynamic programming
algorithm which addresses only part of the overall planning problem.

At the same time, there is an explosion of raw computational
capability underway in SIMD or SIMD-like MIMD processors. These have
so far proved most effective in highly structured problems of matrix form
that maps directly to the processor array, such as signal and image
processing. Figure 9-3 illustrates the goal of finding means, in the form of
new abstractions or adaptations, necessary to increase the applicability of
these machines for planning. Where it is possible to map a planning space
to a spatial grid, as is also the case for the Zap processor, such machines
can be usefully applied. One can project a two dimensional map onto the
processor array, for example, and vary constraints by flagging processors
as unavailable for path traversal. Mapping more amorphous problem
configurations such as graphs is more difticult. The best use of these
machines in a manner comparable to that nceded for planning appears to
be in the domain of machine vision.

The goal is to find abstractions that
allow real time planning problems to
map to high powered hardware
that already exists, but is now
too narrow in applicability

AT

Scope/Ease of Applicability
Raw Computational Power ||

RO

CISC RIS MIMD CM-type Array Custom Custom
SIMD  SIMD Processor VLSI

uniprocessors parallel machines
Figure 9-3 Goal of Applying Highly Parallel Forms of Computers

106 BDM/VSQ-91-0742-TR




BDOM INTERNATIONAL, INC.

The following recommendations are made in the interest of
incorporating high performance hardware into the planning technology for
Pilot's Associate:

1. Look for mappings from the planning problem domain to the vision
domain. so that vision algorithms and hardware can be exploited for
planning as well.

2. Look for other (more direct) mappings of planning onto SIMD and
tightly coupled SIMD-like MIMD machines.  The search should target both
simple grid SIMD machines and thosc having more complex routing
structurcs.

3. Investigate tie possibility of generalizing on the Prolog and Expert
systems engines to handlc more general constraint languages.  Deterinine
whether fuzzy iogic engines can be used for this purposc.

4. Investigate implementing  primitive  cperations or  algornthms of
planning as custom processors and, ulumately, VLSI.  Monitor emerging
hardware tools such as programmable logic for opportunities to support

custom approaches at ninimum infrastructure cost.

5. Monitor the application of Neural Nets tor suitability for planning.
9.5 References

The references for this chapter are numcrically deunted and located
in the reference section of the publication.
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CHAPTER 10

SUMMARY AND RECONM.MENDATIONS

In this document. we have: (1) reviewed the principal paradigms for
automated planning, (2) explored the relationship betweer Al-automated
planting technology with some related technologies (decision theory,
optimization theory, hardware engineering), and (3) examined the
relevance of each class of techniques to associate system technology. With
regard to (3), cach chapter identified how various autornated planning
techniques can be applied to associate systems that provide real time
planning support. In this section we summarize thesec potential
applications and make our final rccommendations.

Planning as Heuristic Search - Most route planning systems draw from
this technology. In many cases, A* or some other global search procedures
becomes the core algorithm for generating routes. This will continue to be
a fruitful area for development. However, there are fundamental limits on
the extent to which global search techniques can scale. As the numbe of
input variables incrcases, the complexity of global search techniques
generally increases exponentially. We do not see much hope in getting
around these scaling problems. Consequently, global search procedures
can only account for a subset of all rclevant factors and constraints when
gencrating routes.  This suggests that the output of global-search-based
routec planners can never be stand-alone. Soime post-processing  will
inevitably be required to check these routes for realism.

Generative Planning - Classical planners and constraini-based planners
arc usually considered to be generative planners -- planners that operate
by generating plans from scratch or a limited plan skelecton. In general,
planncrs in this category are not well-suited to real-time planning and
replanning problems.  For a generative planner to be part of a real-time
system, two things are necessary: a library of well-enginecered skeletal
plans and a reactive control system. The skeletal plans are needed so that
the planner avoids scarching through a very large space of possible plans.
A reactive control system is needed so to guarantce rcal-time reactivity
while when the ¢ twation 1s evolving faster than the planner cin react. The
relationship between planning and rcal-time reactivity 1s currently a
significant rescarch arca in Al. The basic rcsearch rclating generative
planning and reactive control should be monitored.
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Transformational Planning - As described in Chapter 4,
transformational planners operate by recalling and modifying fully-
detailed plans. In conirast to the generative planners, these planners seem
be suited to real-tirne planning problems. Since they always begin with a
detailed plan, immediate execution of the first sieps of that plan should be
feasible. However, therc is a risk. If the plan is executed prior to
completing the transformation process, then the plan may be faulty and
the first steps of that plan may represent inappropriate actions. On
balancc however this seems like a reasonable approach to real-time
planning/replanning. A possible initiative in this area should be explored.

Planning from First-Principals - This remains an interesting research
area with potentially high payoff. However, first-principals planners are
not ready for serious applications.

Planning, Probability and Decision Theory - Decision and probability
theory can be used to projuct probabilities, select options, control the
planning process, allocate rcsources to control versus planning, support
anytime problem solving, ctc. Thec application of probabilistic and decision
theoretic techniques to automated planning 1is just beginning to be

explored.  Although this work is still exploratory, it deserves careful
monitoring.
Planning and Optimization - As discussed in Chapter 8, there is a

natural complementarity between Al-based heuristic problem solving and
OR-based optimization techniques. We believe that a careful integration of
Al-based automatcd planning techriques with optimization procedures
could lcad to srbstantial improvements in automated planning technology.
Specifically, we believe that systems can be developed that generate plans
in real-time that are of reliably high quality. A specific architecture for
mcrging these apprcaches was proposed in Chapter 8.  Many others are
possible.  We believe this to be a key area for future investment.

Hardware for Planning - Automated planning is usually a
computationally intensive activity. Because of this, it scems that hardware
systems tailored to processes necessary for automated planning could be
useful. This area has not been explored in great depth, but, as we showed
in Chapter 9, there is considerable potential for dedicated hardware to be
applicd to planning problems.
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